gpt4 book ai didi

python - 大量图像上的Tensorflow预测很慢

转载 作者:行者123 更新时间:2023-12-02 17:08:57 25 4
gpt4 key购买 nike

我正在按照本教程在Tensorflow中进行图像分类:http://cv-tricks.com/tensorflow-tutorial/training-convolutional-neural-network-for-image-classification/。对单个图像的训练和测试效果很好。但是,我对大量图像进行预测的代码非常慢,它消耗了100%的CPU,并且几乎消耗了最大内存!对于2700张图像,需要24多个小时!这是不实际的。有没有一种方法可以像进行批培训一样进行批测试?请注意,我还需要对图像进行标准化。这是我的代码:

import tensorflow as tf
import numpy as np
import os,glob,cv2
import sys,argparse


# First, pass the path of the image
os.chdir("/somepath")

i = 0
files = glob.glob('*.jpg')
files.extend(glob.glob('*.JPG'))
totalNumber = len(files)
print("total number of images is:", totalNumber)

image_size=128
num_channels=3
text_file = open("Results.txt", "w")

for file in files:
images = []
filename = file
print(filename)
text_file.write("\n")
text_file.write(filename)
# Reading the image using OpenCV
image = cv2.imread(filename)
# Resizing the image to our desired size and preprocessing will be done exactly as done during training
image = cv2.resize(image, (image_size, image_size),0,0, cv2.INTER_LINEAR)
images.append(image)
images = np.array(images, dtype=np.uint8)
images = images.astype('float32')
images = np.multiply(images, 1.0/255.0)
#The input to the network is of shape [None image_size image_size num_channels]. Hence we reshape.
x_batch = images.reshape(1, image_size,image_size,num_channels)

## Let us restore the saved model
sess = tf.Session()
# Step-1: Recreate the network graph. At this step only graph is created.
saver = tf.train.import_meta_graph('pathtomymeta/my_model-9909.meta')
# Step-2: Now let's load the weights saved using the restore method.
saver.restore(sess, tf.train.latest_checkpoint('pathtomycheckpoints/checkpoints/'))

# Accessing the default graph which we have restored
graph = tf.get_default_graph()

# Now, let's get hold of the op that we can be processed to get the output.
# In the original network y_pred is the tensor that is the prediction of the network
y_pred = graph.get_tensor_by_name("y_pred:0")

## Let's feed the images to the input placeholders
x = graph.get_tensor_by_name("x:0")
y_true = graph.get_tensor_by_name("y_true:0")
y_test_images = np.zeros((1, 3)) #np.zeros((1, 2))


### Creating the feed_dict that is required to be fed to calculate y_pred
feed_dict_testing = {x: x_batch, y_true: y_test_images}
result = sess.run(y_pred, feed_dict=feed_dict_testing)
# result is of this format [probabiliy_of_rose probability_of_sunflower]
print(result)
text_file.write("\n")
text_file.write('%s' % result[i,0])
text_file.write("\t")
text_file.write('%s' % result[i,1])
text_file.write("\t")
text_file.write('%s' % result[i,2])

text_file.close()

最佳答案

我认为您应该在代码中考虑非常明显的“优化”。您正在执行for循环,并且在每次迭代中,您都在加载图像,还加载模型,构建图形,然后进行预测。

但是,加载模型和构建图实际上并不依赖于for循环或其中的任何变量(例如输入图像)。 for循环中的大多数时间都可能花费在加载模型上,而不进行实际的预测。您可以使用探查器进行查找。

因此,我建议您只需在for循环之前加载模型并构建一次图形,然后在for循环内使用以下两行代码:

feed_dict_testing = {x: x_batch, y_true: y_test_images}
result = sess.run(y_pred, feed_dict=feed_dict_testing)

它应该快得多。它可能仍然很慢,但是那是因为在CPU上评估大型神经网络本身很慢。

关于python - 大量图像上的Tensorflow预测很慢,我们在Stack Overflow上找到一个类似的问题: https://stackoverflow.com/questions/48211346/

25 4 0
Copyright 2021 - 2024 cfsdn All Rights Reserved 蜀ICP备2022000587号
广告合作:1813099741@qq.com 6ren.com