- html - 出于某种原因,IE8 对我的 Sass 文件中继承的 html5 CSS 不友好?
- JMeter 在响应断言中使用 span 标签的问题
- html - 在 :hover and :active? 上具有不同效果的 CSS 动画
- html - 相对于居中的 html 内容固定的 CSS 重复背景?
我一直在使用带有附加类型级奇偶校验信息的自然数。 succ
已以最直接的方式成功实现:
succ :: Natural p -> Natural (Opp p)
succ = Succ
但是,我仍然在努力让 pred
进行类型检查。一个最小的例子:
{-# LANGUAGE DataKinds #-}
{-# LANGUAGE GADTs #-}
{-# LANGUAGE TypeFamilies #-}
{-# LANGUAGE TypeFamilyDependencies #-}
data Parity = Even | Odd
type family Opp (p :: Parity) = (r :: Parity) | r -> p where
Opp 'Odd = 'Even
Opp 'Even = 'Odd
data Natural :: Parity -> * where
Zero :: Natural 'Even
Succ :: Natural p -> Natural (Opp p)
pred :: Natural (Opp p) -> Natural p
pred (Succ n) = n
如何才能成功实现 pred
?现在我遇到了许多不同的大型且复杂的类型错误,尤其是无法推断出Opp p ~ p1
。
最佳答案
给定奇偶校验
的单例:
data SParity :: Parity -> Type where
SEven :: SParity Even
SOdd :: SParity Odd
我们可以证明Opp
的单射性
oppInj' :: Opp p ~ Opp q => SParity p -> SParity q -> p :~: q
oppInj' SEven SEven = Refl
oppInj' SOdd SOdd = Refl
现在我们可以定义:
data Natural' :: Parity -> Type where
Zero' :: Natural' Even
Succ' :: SParity p -> Natural' p -> Natural' (Opp p)
pred' :: SParity p -> Natural' (Opp p) -> Natural' p
pred' p (Succ' q n) = case oppInj' p q of Refl -> n
您可以安全地执行删除以清除所有单例垃圾:
-- for maximum symmetry, instead of relying on type applications we could
-- just substitute Proxy# in place of SParity everywhere, but meh
oppInj :: forall p q. Opp p ~ Opp q => p :~: q
oppInj = unsafeCoerce Refl -- we know this is OK because oppInj' exists
data Natural :: Parity -> Type where
Zero :: Natural Even
Succ :: Natural p -> Natural (Opp p)
pred :: forall p. Natural (Opp p) -> Natural p
pred (Succ (n :: Natural q)) = case oppInj @p @q of Refl -> n
这种模式,用单例做一些事情,然后删除它们以改善空间和时间(这里它只是一个常数因子)在 Haskell 中进行依赖类型编程时很常见。通常,您不会编写 Natural'
或 pred'
,但它们对于编写删除版本很有用。
PS:确保处理零
情况!
关于haskell - 如何通过类型级奇偶校验找到 Natural 的前身?,我们在Stack Overflow上找到一个类似的问题: https://stackoverflow.com/questions/56924244/
在 Haskell 中,类型声明使用双冒号,即 (::),如 not::Bool -> Bool。 但是在许多语法与 Haskell 类似的语言中,例如榆树、 Agda 、他们使用单个冒号(:)来声明
insertST :: StateDecoder -> SomeState -> Update SomeState SomeThing insertST stDecoder st = ... Stat
如果这个问题有点含糊,请提前道歉。这是一些周末白日梦的结果。 借助 Haskell 出色的类型系统,将数学(尤其是代数)结构表达为类型类是非常令人愉快的。我的意思是,看看 numeric-prelud
我有需要每 5 分钟执行一次的小程序。 目前,我有执行该任务的 shell 脚本,但我想通过 CLI 中的键为用户提供无需其他脚本即可运行它的能力。 实现这一目标的最佳方法是什么? 最佳答案 我想你会
RWH 面世已经有一段时间了(将近 3 年)。在在线跟踪这本书的渐进式写作之后,我渴望获得我的副本(我认为这是写书的最佳方式之一。)在所有相当学术性的论文中,作为一个 haskell 学生,读起来多么
一个经典的编程练习是用 Lisp/Scheme 编写一个 Lisp/Scheme 解释器。可以利用完整语言的力量来为该语言的子集生成解释器。 Haskell 有类似的练习吗?我想使用 Haskell
以下摘自' Learn You a Haskell ' 表示 f 在函数中用作“值的类型”。 这是什么意思?即“值的类型”是什么意思? Int 是“值的类型”,对吗?但是 Maybe 不是“值的类型”
现在我正在尝试创建一个基本函数,用于删除句子中的所有空格或逗号。 stringToIntList :: [Char] -> [Char] stringToIntList inpt = [ a | a
我是 Haskell 的新手,对模式匹配有疑问。这是代码的高度简化版本: data Value = MyBool Bool | MyInt Integer codeDuplicate1 :: Valu
如何解释这个表达式? :t (+) (+3) (*100) 自 和 具有相同的优先级并且是左结合的。我认为这与 ((+) (+3)) (*100) 相同.但是,我不知道它的作用。在 Learn
这怎么行 > (* 30) 4 120 但这不是 > * 30 40 error: parse error on input ‘*’ 最佳答案 (* 30) 是一个 section,它仍然将 * 视为
我想创建一个函数,删除满足第二个参数中给定谓词的第一个元素。像这样: removeFirst "abab" ( 'b') = "abab" removeFirst [1,2,3,4] even =
Context : def fib(n): if n aand returns a memoized version of the same function. The trick is t
我明白惰性求值是什么,它是如何工作的以及它有什么优势,但是你能解释一下 Haskell 中什么是严格求值吗?我似乎找不到太多关于它的信息,因为惰性评估是最著名的。 他们各自的优势是什么。什么时候真正使
digits :: Int -> [Int] digits n = reverse (x) where x | n digits 1234 = [3,1,2,4]
我在 F# 中有以下代码(来自一本书) open System.Collections.Generic type Table = abstract Item : 'T -> 'U with ge
我对 Haskell 比较陌生,过去几周一直在尝试学习它,但一直停留在过滤器和谓词上,我希望能得到帮助以帮助理解。 我遇到了一个问题,我有一个元组列表。每个元组包含一个 (songName, song
我是 haskell 的初学者,我试图为埃拉托色尼筛法定义一个简单的函数,但它说错误: • Couldn't match expected type ‘Bool -> Bool’
我是 Haskell 语言的新手,我在使用 read 函数时遇到了一些问题。准确地说,我的理解是: read "8.2" + 3.8 应该返回 12.0,因为我们希望返回与第二个成员相同的类型。我真正
当我尝试使用真实项目来驱动它来学习 Haskell 时,我遇到了以下定义。我不明白每个参数前面的感叹号是什么意思,我的书上好像也没有提到。 data MidiMessage = MidiMessage
我是一名优秀的程序员,十分优秀!