gpt4 book ai didi

python - 将翻转图像改变图像尺寸

转载 作者:行者123 更新时间:2023-12-02 17:05:02 24 4
gpt4 key购买 nike

我有一张从 kaggle 举办的比赛中挑选出来的图像和它的面具。图片的形状是(512,512,3)掩码是(512,512,1) .申请 function(flipping) 后在图像上,形状保持不变。但是,在我尝试访问 (print mask[:,:,0]) 等掩码时应用该操作之前,我得到一个矩阵,

  [[0. 0. 0. ... 0. 0. 0.]
[0. 0. 0. ... 0. 0. 0.]
[0. 0. 0. ... 0. 0. 0.]
...
[0. 0. 0. ... 0. 0. 0.]
[0. 0. 0. ... 0. 0. 0.]
[0. 0. 0. ... 0. 0. 0.]]

但在应用操作后,尝试访问掩码 (print mask[:,:,0]),我收到以下错误
 Traceback (most recent call last):
File "Augmentation.py", line 94, in <module>
plot_img_and_mask_transformed(img,mask,img_flip,mask_flip)
File "Augmentation.py", line 36, in plot_img_and_mask_transformed
print(mask_tr[:,:,0])
IndexError: too many indices for array

我应用的功能是
 def random_flip(img,mask,u=0.5):

if np.random.random() < u :
img = cv.flip(img,0)
mask = cv.flip(mask,0)
return img, mask

img, mask = get_image_and_mask(img_id)
img_tr,mask_tr = random_flip(img,mask)
plot(img,mask,img_tr,mask_tr)

翻转前图像和蒙版的形状
  ((512, 512, 3), (512, 512, 1))

翻转后图像和蒙版的形状
  ((512, 512, 3), (512, 512))

有人可以帮我弄清楚幕后发生的事情吗?

代码
def get_image_and_mask(img_id):
img = image.load_img(join(data_dir,'train','%s.jpg' % img_id),target_size=(input_size,input_size))
img = image.img_to_array(img)
mask = image.load_img(join(data_dir,'train_masks','%s_mask.gif' % img_id), grayscale=True,target_size=(input_size,input_size))
mask = image.img_to_array(mask)
img,mask = img / 255., mask/ 255.
return img, mask

def plot_img_and_mask(img,mask):
fig, axs = plt.subplots(ncols=2, figsize=(10,5),sharex=True,sharey=True)
axs[0].imshow(img)
axs[1].imshow(mask[:,:,0])
for ax in axs:
ax.set_xlim(0,input_size)
ax.axis('off')
fig.tight_layout()
plt.show()

def plot_img_and_mask_transformed(img, mask, img_tr, mask_tr):
fig, axs=plt.subplots(ncols=4,figsize=(16,4),sharex=True,sharey=True)
axs[0].imshow(img)

axs[1].imshow(mask[:,:,0])
print(mask[:,:,0])
print(mask_tr[:,:,0])
axs[2].imshow(img_tr)
axs[3].imshow(mask_tr)

for ax in axs:
ax.set_xlim(0,input_size)
ax.axis('off')

fig.tight_layout()
plt.show()

def random_flip(img,mask,u=0.5):
# Why do we have to check less than u
if np.random.random() < u :
img = cv.flip(img,0)
mask = cv.flip(mask,0)
return img, mask


def rotate(x,theta,row_axis=0,col_axis=1,channel_axis=2,fill_mode='nearest',cval=0):
rotation_matrix = np.array([
[np.cos(theta),-np.sin(theta),0],
[np.sin(theta),np.cos(theta),0],
[0,0,1]
])

h, w = x.shape[row_axis], x.shape[col_axis]
transform_matrix = image.transform_matrix_offset_center(rotation_matrix,h,w)
x = image.apply_transform(x,transform_matrix,channel_axis,fill_mode,cval)
return x

def random_rotate(img, mask, rotate_limit=(-20,20), u=0.5):
if np.random.random() < u:
theta = np.pi/ 180 * np.random.uniform(rotate_limit[0], rotate_limit[1])
img = rotate(img,theta)
mask = rotate(mask,theta)
return img, mask

if __name__== '__main__':

input_size = 512
data_dir = '../data/carvana-image-masking-challenge'
np.random.seed(1987)

df_train = pd.read_csv(join(data_dir,'train_masks.csv'),usecols=['img'])
df_train['img_id']=df_train['img'].map(lambda s:s.split('.')[0])
df_train.head(3)


img_ids=df_train['img_id'].values
np.random.shuffle(img_ids)
img_id=img_ids[0]
img,mask=get_image_and_mask(img_id)
print((img.shape,mask.shape))
plot_img_and_mask(img,mask)

img_flip,mask_flip = random_flip(img,mask,u=1)
print((img_flip.shape,mask_flip.shape))
plot_img_and_mask_transformed(img,mask,img_flip,mask_flip)

输出
    Using TensorFlow backend.
C:\Users\JamesJohnson\AppData\Local\Programs\Python\Python35\lib\site- packages\keras_preprocessing\image.py:492: UserWarning: grayscale is deprecated. Please use color_mode = "grayscale"
warnings.warn('grayscale is deprecated. Please use '
> ((512, 512, 3), (512, 512, 1))
> ((512, 512, 3), (512, 512))
[[0. 0. 0. ... 0. 0. 0.]
[0. 0. 0. ... 0. 0. 0.]
[0. 0. 0. ... 0. 0. 0.]
...
[0. 0. 0. ... 0. 0. 0.]
[0. 0. 0. ... 0. 0. 0.]
[0. 0. 0. ... 0. 0. 0.]]
Traceback (most recent call last):
File "Augmentation.py", line 94, in <module>
plot_img_and_mask_transformed(img,mask,img_flip,mask_flip)
File "Augmentation.py", line 36, in plot_img_and_mask_transformed
print(mask_tr[:,:,0])
IndexError: too many indices for array

最佳答案

当您翻转掩码时,OpenCV 似乎会转储单例维度。翻转后,您需要重新引入它。

mask_flip = mask_flip[..., None]

一种更方便的方法是修改您的方法,以便在翻转后以单例维度返回掩码,以防万一丢失。这样,您不必每次翻转时都执行此操作,而是由该方法处理。
def random_flip(img,mask,u=0.5):
# Why do we have to check less than u
if np.random.random() < u:
img = cv.flip(img,0)
mask = cv.flip(mask,0)
if len(mask.shape) == 2:
mask = mask[..., None]
return img, mask

顺便说一句,您有一条评论询问为什么您必须检查小于 u在方法中。请记住 np.random.random方法统一生成一个介于 0 和 1 之间的值。假设您选择 u = 0.3 .这意味着您有 30% 的机会选择介于 0 和 0.3 之间的值,有 70% 的机会选择介于 0.3 和 1 之间的值。粗略地说,这意味着如果 u = 0.3 ,有 30% 的机会是 if条件运行,因此您翻转图像和蒙版。因此, u控制图像和蒙版翻转发生的概率。

关于python - 将翻转图像改变图像尺寸,我们在Stack Overflow上找到一个类似的问题: https://stackoverflow.com/questions/56340206/

24 4 0
Copyright 2021 - 2024 cfsdn All Rights Reserved 蜀ICP备2022000587号
广告合作:1813099741@qq.com 6ren.com