gpt4 book ai didi

python - TypeError: 'NoneType'对象无法下标opencv-python/python face_recognition

转载 作者:行者123 更新时间:2023-12-02 16:51:39 29 4
gpt4 key购买 nike

我有face_recognition python脚本,如果执行可以正常运行,但是如果执行则随机显示错误:

  Traceback (most recent call last):
File "faces_test.py", line 38, in <module>
rgb_frame = frame[:, :, ::-1]
TypeError: 'NoneType' object is not subscriptable

该错误表明有时运行有时会出现该错误。我不知道会发生什么,但是我之前将api.py的face_recognition容忍度从0.6更改为0.4。我不确定chage会对opencv造成随机错误

我想运行我的脚本,并且不会得到这样的随机错误,任何解决方案?

环境版本:
  • python = 3.8.2
  • opencv-contrib-python 4.2.0.32
  • opencv-python 4.2.0.32
  • 人脸识别1.3.0
  • 人脸识别模型0.3.0

  • 我的python脚本:
    import face_recognition
    import cv2
    import numpy as np

    # This is a super simple (but slow) example of running face recognition on live video from your webcam.
    # There's a second example that's a little more complicated but runs faster.

    # PLEASE NOTE: This example requires OpenCV (the `cv2` library) to be installed only to read from your webcam.
    # OpenCV is *not* required to use the face_recognition library. It's only required if you want to run this
    # specific demo. If you have trouble installing it, try any of the other demos that don't require it instead.

    # Get a reference to webcam #0 (the default one)
    video_capture = cv2.VideoCapture(0 + cv2.CAP_DSHOW)

    # Load a sample picture and learn how to recognize it.
    obama_image = face_recognition.load_image_file("./training/obama.jpg")
    obama_face_encoding = face_recognition.face_encodings(obama_image)[0]

    # Load a second sample picture and learn how to recognize it.
    biden_image = face_recognition.load_image_file("./training/biden.jpg")
    biden_face_encoding = face_recognition.face_encodings(biden_image)[0]

    # Create arrays of known face encodings and their names
    known_face_encodings = [
    obama_face_encoding,
    biden_face_encoding
    ]
    known_face_names = [
    "obama",
    "biden"
    ]

    while True:
    # Grab a single frame of video
    ret, frame = video_capture.read()

    # Convert the image from BGR color (which OpenCV uses) to RGB color (which face_recognition uses)
    rgb_frame = frame[:, :, ::-1]

    # Find all the faces and face enqcodings in the frame of video
    face_locations = face_recognition.face_locations(rgb_frame)
    face_encodings = face_recognition.face_encodings(rgb_frame, face_locations)

    # Loop through each face in this frame of video
    for (top, right, bottom, left), face_encoding in zip(face_locations, face_encodings):
    # See if the face is a match for the known face(s)
    matches = face_recognition.compare_faces(known_face_encodings, face_encoding)

    name = "Unknown"

    # If a match was found in known_face_encodings, just use the first one.
    # if True in matches:
    # first_match_index = matches.index(True)
    # name = known_face_names[first_match_index]

    # Or instead, use the known face with the smallest distance to the new face
    face_distances = face_recognition.face_distance(known_face_encodings, face_encoding)
    best_match_index = np.argmin(face_distances)
    #print(face_distances)
    #print(best_match_index)
    if matches[best_match_index]:
    name = known_face_names[best_match_index]
    print(name)

    # Draw a box around the face
    cv2.rectangle(frame, (left, top), (right, bottom), (0, 0, 255), 2)

    # Draw a label with a name below the face
    cv2.rectangle(frame, (left, bottom - 35), (right, bottom), (0, 0, 255), cv2.FILLED)
    font = cv2.FONT_HERSHEY_DUPLEX
    cv2.putText(frame, name, (left + 6, bottom - 6), font, 1.0, (255, 255, 255), 1)

    # Display the resulting image
    cv2.imshow('Video', frame)

    # Hit 'q' on the keyboard to quit!
    if cv2.waitKey(1) & 0xFF == ord('q'):
    break

    # Release handle to the webcam
    video_capture.release()
    cv2.destroyAllWindows()

    最佳答案

    很抱歉收到您的回复,但是如果您仍在使用OpenCV进行编码,那么可能会有所帮助。
    第一评论
    您可能没有通过网络摄像头源获得任何视频。
    例如,看这段代码

    # Get a reference to webcam #0 (the default one)
    video_capture = cv2.VideoCapture(0 + cv2.CAP_DSHOW)
    有时,摄像机将在插槽“1”而不是“0”中进行初始化。重要的是要考虑到这些初始化可能会反弹。如果要确保可以正确识别摄像机,则可以始终在变量中显式定义摄像机位置,还可以进行一些错误处理。
    问题一的示例:
    def setup_camera():
    """
    Initialize camera by calling cv2.VideoCapture
    Produces a variable that you can read from using self.capture.read
    If camera doesn't connect prints error and Camera not conntected
    """

    device = '/dev/v4l/by-id/usb-HD_Camera_Manufacturer_USB_2.0_Camera-video-index0'

    try:
    capture = cv2.VideoCapture(device)
    print("Camera Connection Successful")
    self.capture.release()
    except IOError as e:
    print(e)
    print("Camera Not Connected")
    这至少可以帮助您入门,并且会告诉您是否未在录制摄像头。
    如果您希望能够在系统上轻松找到相机(并且您正在使用linux-我是一个Ubuntu专家,如果您使用的是Windows,抱歉。),您可以运行v4l-utils这样的简单程序包来查找相机。类似于以下代码:
    sudo apt-get install v4l-utils
    v4l2-ctl --list-devices
    应该给您以下答复:
    USB 2.0 Camera: HD USB Camera (usb-0000:00:1a.0-1.5):
    /dev/video0
    然后,您可以使用udevadm运行命令以获取有关 / dev / video0 的更多信息:
    udevadm info --query=all --name=/dev/video0
    这将返回如下内容:
    P: /devices/pci0000:00/0000:00:1a.0/usb1/1-1/1-1.5/1-1.5:1.0/video4linux/video0
    N: video0
    S: v4l/by-id/usb-HD_Camera_Manufacturer_USB_2.0_Camera-video-index0
    S: v4l/by-path/pci-0000:00:1a.0-usb-0:1.5:1.0-video-index0
    E: COLORD_DEVICE=1
    E: COLORD_KIND=camera
    E: DEVLINKS=/dev/v4l/by-path/pci-0000:00:1a.0-usb-0:1.5:1.0-video-index0 /dev/v4l/by-id/usb-HD_Camera_Manufacturer_USB_2.0_Camera-video-index0
    E: DEVNAME=/dev/video0
    E: DEVPATH=/devices/pci0000:00/0000:00:1a.0/usb1/1-1/1-1.5/1-1.5:1.0/video4linux/video0
    E: ID_BUS=usb
    E: ID_FOR_SEAT=video4linux-pci-0000_00_1a_0-usb-0_1_5_1_0
    E: ID_MODEL=USB_2.0_Camera
    E: ID_MODEL_ENC=USB\x202.0\x20Camera
    E: ID_MODEL_ID=9230
    E: ID_PATH=pci-0000:00:1a.0-usb-0:1.5:1.0
    E: ID_PATH_TAG=pci-0000_00_1a_0-usb-0_1_5_1_0
    E: ID_REVISION=0100
    E: ID_SERIAL=HD_Camera_Manufacturer_USB_2.0_Camera
    E: ID_TYPE=video
    E: ID_USB_DRIVER=uvcvideo
    E: ID_USB_INTERFACES=:0e0100:0e0200:
    E: ID_USB_INTERFACE_NUM=00
    E: ID_V4L_CAPABILITIES=:capture:
    E: ID_V4L_PRODUCT=USB 2.0 Camera: HD USB Camera
    E: ID_V4L_VERSION=2
    E: ID_VENDOR=HD_Camera_Manufacturer
    E: ID_VENDOR_ENC=HD\x20Camera\x20Manufacturer
    E: ID_VENDOR_ID=05a3
    E: MAJOR=81
    E: MINOR=0
    E: SUBSYSTEM=video4linux
    E: TAGS=:uaccess:seat:
    E: USEC_INITIALIZED=23692957
    如您所见, DEVLINKS 中的第二个值提供了可用于调用相机的硬件位置。
    第二条评论
    OpenCV具有内置函数,可以对帧进行转换。您的方法和我将使用的示例都在 this post中。为了更深入地研究事物,让我们尝试一下。
    例如 -
    您使用的代码方法很好:
    # Convert the image from BGR color (which OpenCV uses) to RGB color (which face_recognition uses)

    rgb_frame = frame[:, :, ::-1]
    如果问题二不起作用,请尝试使用此 示例:
    rgb_frame = cv2.cvtColor(frame, cv2.COLOR_BGR2RGB)
    结论
    我希望这一答复能有所帮助。我不认为这是转换问题,但很可能是相机初始化问题。尝试获取更准确的相机进纸位置,这将为您提供更强大的相机调用方法。祝你今天愉快!

    关于python - TypeError: 'NoneType'对象无法下标opencv-python/python face_recognition,我们在Stack Overflow上找到一个类似的问题: https://stackoverflow.com/questions/60701743/

    29 4 0
    Copyright 2021 - 2024 cfsdn All Rights Reserved 蜀ICP备2022000587号
    广告合作:1813099741@qq.com 6ren.com