gpt4 book ai didi

python-2.7 - Python//如何使用OpenCV中SIFT提取的特征在目标对象周围获取矩形

转载 作者:行者123 更新时间:2023-12-02 16:49:23 24 4
gpt4 key购买 nike

这是我的代码:

import numpy as np
import cv2
from matplotlib import pyplot as plt
from scipy import misc
import matplotlib.pyplot as plt

MIN_MATCH_COUNT = 10

img1 = cv2.imread('Screenshot_2.png',0)
img2 = cv2.imread('Screenshot_12.png',0)

# Initiate SIFT detector
sift = cv2.xfeatures2d.SIFT_create()

# find the keypoints and descriptors with SIFT
kp1, des1 = sift.detectAndCompute(img1,None)
kp2, des2 = sift.detectAndCompute(img2,None)

FLANN_INDEX_KDTREE = 0
index_params = dict(algorithm = FLANN_INDEX_KDTREE, trees = 5)
search_params = dict(checks = 50)

flann = cv2.FlannBasedMatcher(index_params, search_params)

matches = flann.knnMatch(des1,des2,k=2)


good = []
for m,n in matches:
if m.distance < 0.7*n.distance:
good.append(m)
print good
if len(good)>MIN_MATCH_COUNT:
src_pts = np.float32([ kp1[m.queryIdx].pt for m in good ]).reshape(-1,1,2)
dst_pts = np.float32([ kp2[m.trainIdx].pt for m in good ]).reshape(-1,1,2)

M, mask = cv2.findHomography(src_pts, dst_pts, cv2.RANSAC,5.0)
matchesMask = mask.ravel().tolist()

h,w = img1.shape
pts = np.float32([ [0,0],[0,h-1],[w-1,h-1],[w-1,0] ]).reshape(-1,1,2)
dst = cv2.perspectiveTransform(pts,M)

img2 = cv2.polylines(img2,[np.int32(dst)],True,255,3, cv2.LINE_AA)

else:
print "Not enough matches are found - %d/%d" % (len(good),MIN_MATCH_COUNT)
matchesMask = None

draw_params = dict(matchColor = (0,255,0), # draw matches in green color
singlePointColor = None,
matchesMask = matchesMask, # draw only inliers
flags = 2)

img3 = cv2.drawMatches(img1,kp1,img2,kp2,good,None,**draw_params)

plt.imshow(img3, 'gray'),plt.show()

我想使用OpenCV使用此方法跟踪检测到的对象的矩形,但是我不知道如何开始获取所需的内容。

我发现没有地方可以用Python解决我的问题

您对我进行项目有什么建议吗?

最佳答案

只需获取其中mask == 1的src_pts并在源图像上找到矩形的min_X,min_Y,max_X,max_Y。

下面是我尝试过的代码。

pts = src_pts[mask==1]
min_x, min_y = np.int32(pts.min(axis=0))
max_x, max_y = np.int32(pts.max(axis=0))

在这里,您获得的左上角点为(min_x,min_y),而底部的右角点为(max_x,max_y)。下面的代码用于显示originalImage上的边界框。
cv2.rectangle(originalImage,(min_x, min_y), (max_x,max_y), 255,2)
plt.imshow(originalImage, cmap='gray')

关于python-2.7 - Python//如何使用OpenCV中SIFT提取的特征在目标对象周围获取矩形,我们在Stack Overflow上找到一个类似的问题: https://stackoverflow.com/questions/46239269/

24 4 0
Copyright 2021 - 2024 cfsdn All Rights Reserved 蜀ICP备2022000587号
广告合作:1813099741@qq.com 6ren.com