gpt4 book ai didi

python - 图像区域的直方图

转载 作者:行者123 更新时间:2023-12-02 16:46:33 33 4
gpt4 key购买 nike

我想在python的numpy图像中获取区域的组织学。我找到了有关如何使用面具here.的解决方案

这个解决方案没有帮助我,因为如果我使用它,我会丢失黑色像素的实际数量。另外,我要获得的区域不一定是矩形。

最佳答案

要计算直方图,请使用np.histogram函数。它返回一个直方图和箱。因此,您可以存储结果并使用它:

hist, bins = np.histogram(arr, bins=bins, range=range)

如果要绘制结果,可以在应用 plt.bar后简单地传递 np.histogrambins来使用 hist:
plt.bar(bins, hist)

另一种选择是使用 matplotlib plt.hist来计算直方图并从原始数据中绘制出直方图:
plt.hist(arr, bins=bins)

这是任何形状的图像区域直方图的完整示例:

码:
import numpy as np
import matplotlib.pyplot as plt
from scipy.misc import face
from PIL import Image, ImageDraw

# Let's create test image with different colors
img = np.zeros((300, 300, 3), dtype=np.uint8)
img[0:150, 0:150] = [255, 0, 0]
img[0:150, 150:] = [0, 255, 0]
img[150:, :150] = [0, 0, 255]
img[150:, 150:] = [255, 255, 255]

# define our function for preparing mask
def prepare_mask(polygon, image):
"""Returns binary mask based on input polygon presented as list of coordinates of vertices
Params:
polygon (list) - coordinates of polygon's vertices. Ex: [(x1,y1),(x2,y2),...] or [x1,y1,x2,y2,...]
image (numpy array) - original image. Will be used to create mask of the same size. Shape (H, W, C).
Output:
mask (numpy array) - boolean mask. Shape (H, W).
"""
# create an "empty" pre-mask with the same size as original image
width = image.shape[1]
height = image.shape[0]
mask = Image.new('L', (width, height), 0)
# Draw your mask based on polygon
ImageDraw.Draw(mask).polygon(polygon, outline=1, fill=1)
# Covert to np array
mask = np.array(mask).astype(bool)
return mask


def compute_histogram(mask, image):
"""Returns histogram for image region defined by mask for each channel
Params:
image (numpy array) - original image. Shape (H, W, C).
mask (numpy array) - boolean mask. Shape (H, W).
Output:
list of tuples, each tuple (each channel) contains 2 arrays: first - computed histogram, the second - bins.

"""
# Apply binary mask to your array, you will get array with shape (N, C)
region = image[mask]

red = np.histogram(region[..., 0].ravel(), bins=256, range=[0, 256])
green = np.histogram(region[..., 1].ravel(), bins=256, range=[0, 256])
blue = np.histogram(region[..., 2].ravel(), bins=256, range=[0, 256])

return [red, green, blue]


def plot_histogram(histograms):
"""Plots histogram computed for each channel.
Params:
histogram (list of tuples) - [(red_ch_hist, bins), (green_ch_hist, bins), (green_ch_hist, bins)]
"""

colors = ['r', 'g', 'b']
for hist, ch in zip(histograms, colors):
plt.bar(hist[1][:256], hist[0], color=ch)

# Create some test masks
red_polygon = [(50, 100), (50, 50), (100, 75)]
green_polygon = [(200, 100), (200, 50), (250, 75)]
blue_polygon = [(50, 250), (50, 200), (100, 225)]
white_polygon = [(200, 250), (200, 200), (250, 225)]
polygons = [red_polygon, green_polygon, blue_polygon, white_polygon]

for polygon in polygons:
mask = prepare_mask(polygon, img)
histograms = compute_histogram(mask, img)

# Let's plot our test results
plt.figure(figsize=(10, 10))

plt.subplot(221)
plt.imshow(img)
plt.title('Image')

plt.subplot(222)
plt.imshow(mask, cmap='gray')
plt.title('Mask')


plt.subplot(223)
plot_histogram(histograms)
plt.title('Histogram')

plt.show()

输出:

enter image description here
enter image description here
enter image description here
enter image description here

浣熊的最终测试:

码:
raccoon = face()
polygon = [(200, 700), (150, 600), (300, 500), (300, 400), (400, 500)]
mask = prepare_mask(polygon, raccoon)
histograms = compute_histogram(mask, raccoon)

plt.figure(figsize=(10, 10))

plt.subplot(221)
plt.imshow(raccoon)
plt.title('Image')

plt.subplot(222)
plt.imshow(mask, cmap='gray')
plt.title('Mask')


plt.subplot(223)
plot_histogram(histograms)
plt.title('Histogram')

plt.show()

输出:

enter image description here

关于python - 图像区域的直方图,我们在Stack Overflow上找到一个类似的问题: https://stackoverflow.com/questions/53923881/

33 4 0
Copyright 2021 - 2024 cfsdn All Rights Reserved 蜀ICP备2022000587号
广告合作:1813099741@qq.com 6ren.com