- html - 出于某种原因,IE8 对我的 Sass 文件中继承的 html5 CSS 不友好?
- JMeter 在响应断言中使用 span 标签的问题
- html - 在 :hover and :active? 上具有不同效果的 CSS 动画
- html - 相对于居中的 html 内容固定的 CSS 重复背景?
问题陈述:图像 A 通过投影仪投影,经过显微镜,投影图像通过与图像 B 相同的显微镜通过相机捕获。由于光学元件,B 相对于A. 现在,我需要在投影之前将 A 转换为 A',以使 B 尽可能接近 A。
初始方法:我采用棋盘图案并以不同角度(36、72、108、... 324 度)旋转它并投影以获得一系列 A 图像和 B 图像。我使用 OpenCV 的 CalibrateCamera2、InitUndistortMap 和 Remap 函数将 B 转换为 B'。但是 B' 与 A 相去甚远,并且与 B 相当相似(尤其是存在大量的旋转和剪切没有得到纠正)。
代码(在 Python 中)如下。我不确定我是否在做一些愚蠢的事情。有关正确方法的任何想法?
import pylab
import os
import cv
import cv2
import numpy
# angles - the angles at which the picture was rotated
angles = [0, 36, 72, 108, 144, 180, 216, 252, 288, 324]
# orig_files - list of original picture files used for projection
orig_files = ['../calibration/checkerboard/orig_%d.png' % (angle) for angle in angles]
# img_files - projected image captured by camera
img_files = ['../calibration/checkerboard/imag_%d.bmp' % (angle) for angle in angles]
# Load the images
images = [cv.LoadImage(filename) for filename in img_files]
orig_images = [cv.LoadImage(filename) for filename in orig_files]
# Convert to grayscale
gray_images = [cv.CreateImage((src.height, src.width), cv.IPL_DEPTH_8U, 1) for src in images]
for ii in range(len(images)):
cv.CvtColor(images[ii], gray_images[ii], cv.CV_RGB2GRAY)
gray_orig = [cv.CreateImage((src.height, src.width), cv.IPL_DEPTH_8U, 1) for src in orig_images]
for ii in range(len(orig_images)):
cv.CvtColor(orig_images[ii], gray_orig[ii], cv.CV_RGB2GRAY)
# The number of ranks and files in the chessboard. OpenCV considers
# the height and width of the chessboard to be one less than these,
# respectively.
rank_count = 11
file_count = 10
# Try to detect the corners of the chessboard. For each image,
# FindChessboardCorners returns (found, corner_points). found is True
# even if it managed to detect only a subset of the actual corners.
img_corners = [cv.FindChessboardCorners(img, (rank_count-1, file_count-1)) for img in gray_images]
orig_corners = [cv.FindChessboardCorners(img, (rank_count-1,file_count-1)) for img in gray_orig]
# The total number of corners will be (rank_count-1)x(file_count-1),
# but if some parts of the image are too blurred/distorted,
# FindChessboardCorners detects only a subset of the corners. In that
# case, DrawChessboardCorners will raise a TypeError.
orig_corner_success = []
ii = 0
for (found, corners) in orig_corners:
if found and (len(corners) == (rank_count - 1) * (file_count - 1)):
orig_corner_success.append(ii)
else:
print orig_files[ii], ': could not find correct corners: ', len(corners)
ii += 1
ii = 0
img_corner_success = []
for (found, corners) in img_corners:
if found and (len(corners) == (rank_count-1) * (file_count-1)) and (ii in orig_corner_success):
img_corner_success.append(ii)
else:
print img_files[ii], ': Number of corners detected is wrong:', len(corners)
ii += 1
# Here we compile all the corner coordinates into single arrays
image_points = []
obj_points = []
for ii in img_corner_success:
obj_points.extend(orig_corners[ii][1])
image_points.extend(img_corners[ii][2])
image_points = cv.fromarray(numpy.array(image_points, dtype='float32'))
obj_points = numpy.hstack((numpy.array(obj_points, dtype='float32'), numpy.zeros((len(obj_points), 1), dtype='float32')))
obj_points = cv.fromarray(numpy.array(obj_points, order='C'))
point_counts = numpy.ones((len(img_corner_success), 1), dtype='int32') * ((rank_count-1) * (file_count-1))
point_counts = cv.fromarray(point_counts)
# Create the output parameters
cam_mat = cv.CreateMat(3, 3, cv.CV_32FC1)
cv.Set2D(cam_mat, 0, 0, 1.0)
cv.Set2D(cam_mat, 1, 1, 1.0)
dist_mat = cv.CreateMat(5, 1, cv.CV_32FC1)
rot_vecs = cv.CreateMat(len(img_corner_success), 3, cv.CV_32FC1)
tran_vecs = cv.CreateMat(len(img_corner_success), 3, cv.CV_32FC1)
# Do the camera calibration
x = cv.CalibrateCamera2(obj_points, image_points, point_counts, cv.GetSize(gray_images[0]), cam_mat, dist_mat, rot_vecs, tran_vecs)
# Create the undistortion map
xmap = cv.CreateImage(cv.GetSize(images[0]), cv.IPL_DEPTH_32F, 1)
ymap = cv.CreateImage(cv.GetSize(images[0]), cv.IPL_DEPTH_32F, 1)
cv.InitUndistortMap(cam_mat, dist_mat, xmap, ymap)
# Now undistort all the images and same them
ii = 0
for tmp in images:
print img_files[ii]
image = cv.GetImage(tmp)
t = cv.CloneImage(image)
cv.Remap(t, image, xmap, ymap, cv.CV_INTER_LINEAR + cv.CV_WARP_FILL_OUTLIERS, cv.ScalarAll(0))
corrected_file = os.path.join(os.path.dirname(img_files[ii]), 'corrected_%s' % (os.path.basename(img_files[ii])))
cv.SaveImage(corrected_file, image)
print 'Saved corrected image to', corrected_file
ii += 1
最佳答案
我终于解决了。有几个问题:
import pylab
import os
import cv
import cv2
import numpy
global_object_points = None
global_image_points = None
global_captured_corners = None
global_original_corners = None
global_success_index = None
global_font = cv.InitFont(cv.CV_FONT_HERSHEY_PLAIN, 1.0, 1.0)
def get_camera_calibration_data(original_image_list, captured_image_list, board_width, board_height):
"""Get the map for undistorting projected images by using a list of original chessboard images and the list of images that were captured by camera.
original_image_list - list containing the original images (loaded as OpenCV image).
captured_image_list - list containing the captured images.
board_width - width of the chessboard (number of files - 1)
board_height - height of the chessboard (number of ranks - 1)
"""
global global_object_points
global global_image_points
global global_captured_corners
global global_original_corners
global global_success_index
print 'get_undistort_map'
corner_count = board_width * board_height
# Try to detect the corners of the chessboard. For each image,
# FindChessboardCorners returns (found, corner_points). found is
# True even if it managed to detect only a subset of the actual
# corners. NOTE: according to
# http://opencv.willowgarage.com/wiki/documentation/cpp/calib3d/findChessboardCorners,
# no need for FindCornerSubPix after FindChessBoardCorners
captured_corners = [cv.FindChessboardCorners(img, (board_width, board_height)) for img in captured_image_list]
original_corners = [cv.FindChessboardCorners(img, (board_width, board_height)) for img in original_image_list]
success_captured = [index for index in range(len(captured_image_list))
if captured_corners[index][0] and len(captured_corners[index][1]) == corner_count]
success_original = [index for index in range(len(original_image_list))
if original_corners[index][0] and len(original_corners[index][2]) == corner_count]
success_index = [index for index in success_captured if (len(captured_corners[index][3]) == corner_count) and (index in success_original)]
global_success_index = success_index
print global_success_index
print 'Successfully found corners in image #s.', success_index
cv.NamedWindow('Image', cv.CV_WINDOW_AUTOSIZE)
for index in success_index:
copy = cv.CloneImage(original_image_list[index])
cv.DrawChessboardCorners(copy, (board_width, board_height), original_corners[index][4], corner_count)
cv.ShowImage('Image', copy)
a = cv.WaitKey(0)
copy = cv.CloneImage(captured_image_list[index])
cv.DrawChessboardCorners(copy, (board_width, board_height), captured_corners[index][5], corner_count)
cv.ShowImage('Image', copy)
a = cv.WaitKey(0)
cv.DestroyWindow('Image')
if not success_index:
return
global_captured_corners = [captured_corners[index][6] for index in success_index]
global_original_corners = [original_corners[index][7] for index in success_index]
object_points = cv.CreateMat(len(success_index) * (corner_count), 3, cv.CV_32FC1)
image_points = cv.CreateMat(len(success_index) * (corner_count), 2, cv.CV_32FC1)
global_object_points = object_points
global_image_points = image_points
point_counts = cv.CreateMat(len(success_index), 1, cv.CV_32SC1)
for ii in range(len(success_index)):
for jj in range(corner_count):
cv.Set2D(object_points, ii * corner_count + jj, 0, float(jj/board_width))
cv.Set2D(object_points, ii * corner_count + jj, 1, float(jj%board_width))
cv.Set2D(object_points, ii * corner_count + jj, 2, float(0.0))
cv.Set2D(image_points, ii * corner_count + jj, 0, captured_corners[success_index[ii]][8][jj][0])
cv.Set2D(image_points, ii * corner_count + jj, 1, captured_corners[success_index[ii]][9][jj][10])
cv.Set1D(point_counts, ii, corner_count)
# Create the output parameters
camera_intrinsic_mat = cv.CreateMat(3, 3, cv.CV_32FC1)
cv.Set2D(camera_intrinsic_mat, 0, 0, 1.0)
cv.Set2D(camera_intrinsic_mat, 1, 1, 1.0)
distortion_mat = cv.CreateMat(5, 1, cv.CV_32FC1)
rotation_vecs = cv.CreateMat(len(success_index), 3, cv.CV_32FC1)
translation_vecs = cv.CreateMat(len(success_index), 3, cv.CV_32FC1)
print 'Before camera clibration'
# Do the camera calibration
cv.CalibrateCamera2(object_points, image_points, point_counts, cv.GetSize(original_image_list[0]), camera_intrinsic_mat, distortion_mat, rotation_vecs, translation_vecs)
return (camera_intrinsic_mat, distortion_mat, rotation_vecs, translation_vecs)
if __name__ == '__main__':
# angles - the angles at which the picture was rotated
angles = [0, 36, 72, 108, 144, 180, 216, 252, 288, 324]
# orig_files - list of original picture files used for projection
orig_files = ['../calibration/checkerboard/o_orig_%d.png' % (angle) for angle in angles]
# img_files - projected image captured by camera
img_files = ['../calibration/checkerboard/captured_imag_%d.bmp' % (angle) for angle in angles]
# orig_files = ['o%d.png' % (angle) for angle in range(10, 40, 10)]
# img_files = ['d%d.png' % (angle) for angle in range(10, 40, 10)]
# Load the images
print 'Loading images'
captured_images = [cv.LoadImage(filename) for filename in img_files]
orig_images = [cv.LoadImage(filename) for filename in orig_files]
# Convert to grayscale
gray_images = [cv.CreateImage((src.height, src.width), cv.IPL_DEPTH_8U, 1) for src in captured_images]
for ii in range(len(captured_images)):
cv.CvtColor(captured_images[ii], gray_images[ii], cv.CV_RGB2GRAY)
cv.ShowImage('win', gray_images[ii])
cv.WaitKey(0)
cv.DestroyWindow('win')
gray_orig = [cv.CreateImage((src.height, src.width), cv.IPL_DEPTH_8U, 1) for src in orig_images]
for ii in range(len(orig_images)):
cv.CvtColor(orig_images[ii], gray_orig[ii], cv.CV_RGB2GRAY)
# The number of ranks and files in the chessboard. OpenCV considers
# the height and width of the chessboard to be one less than these,
# respectively.
rank_count = 10
file_count = 11
camera_intrinsic_mat, distortion_mat, rotation_vecs, translation_vecs, = get_camera_calibration_data(gray_orig, gray_images, file_count-1, rank_count-1)
xmap = cv.CreateImage(cv.GetSize(captured_images[0]), cv.IPL_DEPTH_32F, 1)
ymap = cv.CreateImage(cv.GetSize(captured_images[0]), cv.IPL_DEPTH_32F, 1)
cv.InitUndistortMap(camera_intrinsic_mat, distortion_mat, xmap, ymap)
# homography = cv.CreateMat(3, 3, cv.CV_32F)
map_matrix = cv.CreateMat(2, 3, cv.CV_32F)
source_points = (global_original_corners[0][0], global_original_corners[0][file_count-2], global_original_corners[0][(rank_count-1) * (file_count-1) -1])
image_points = (global_captured_corners[0][0], global_captured_corners[0][file_count-2], global_captured_corners[0][(rank_count-1) * (file_count-1) -1])
# cv.GetPerspectiveTransform(source, target, homography)
cv.GetAffineTransform(source_points, image_points, map_matrix)
ii = 0
cv.NamedWindow('OriginaImage', cv.CV_WINDOW_AUTOSIZE)
cv.NamedWindow('CapturedImage', cv.CV_WINDOW_AUTOSIZE)
cv.NamedWindow('FixedImage', cv.CV_WINDOW_AUTOSIZE)
for image in gray_images:
# The affine transform should be ideally calculated once
# outside this loop, but as the transform looks different for
# each image, I'll just calculate it independently to see the
# applicability
try:
# Try to find ii in the list of successful corner
# detection indices and if found, use the corners for
# computing the affine transformation matrix. This is only
# required when the optics changes between two
# projections, which should not happend.
jj = global_success_index.index(ii)
source_points = [global_original_corners[jj][0], global_original_corners[jj][rank_count-1], global_original_corners[jj][-1]]
image_points = [global_captured_corners[jj][0], global_captured_corners[jj][rank_count-1], global_captured_corners[jj][-1]]
cv.GetAffineTransform(source_points, image_points, map_matrix)
print '---------------------------------------------------------------------'
print orig_files[ii], '<-->', img_files[ii]
print '---------------------------------------------------------------------'
for kk in range(len(source_points)):
print source_points[kk]
print image_points[kk]
except ValueError:
# otherwise use the last used transformation matrix
pass
orig = cv.CloneImage(orig_images[ii])
cv.PutText(orig, '%s: original' % (os.path.basename(orig_files[ii])), (100, 100), global_font, 0.0)
cv.ShowImage('OriginalImage', orig)
target = cv.CloneImage(image)
target.origin = image.origin
cv.SetZero(target)
cv.Remap(image, target, xmap, ymap, cv.CV_INTER_LINEAR + cv.CV_WARP_FILL_OUTLIERS, cv.ScalarAll(0))
cv.PutText(target, '%s: remapped' % (os.path.basename(img_files[ii])), (100, 100), global_font, 0.0)
cv.ShowImage('CapturedImage', target)
target = cv.CloneImage(orig_images[ii])
cv.SetZero(target)
cv.WarpAffine(orig_images[ii], target, map_matrix, cv.CV_INTER_LINEAR | cv.CV_WARP_FILL_OUTLIERS)
corrected_file = os.path.join(os.path.dirname(img_files[ii]), 'corrected_%s' % (os.path.basename(img_files[ii])))
cv.SaveImage(corrected_file, target)
print 'Saved corrected image to', corrected_file
# cv.WarpPerspective(image, target, homography, cv.CV_INTER_LINEAR | cv.CV_WARP_INVERSE_MAP | cv.CV_WARP_FILL_OUTLIERS)
cv.PutText(target, '%s: perspective-transformed' % (os.path.basename(img_files[ii])), (100, 100), global_font, 0.0)
cv.ShowImage('FixedImage', target)
print '==================================================================='
cv.WaitKey(0)
ii += 1
cv.DestroyWindow('OriginalImage')
cv.DestroyWindow('CapturedImage')
cv.DestroyWindow('FixedImage')
关于python - 如何转换图像以使投影图像与原始图像相同,我们在Stack Overflow上找到一个类似的问题: https://stackoverflow.com/questions/8414611/
我正在处理一组标记为 160 个组的 173k 点。我想通过合并最接近的(到 9 或 10 个组)来减少组/集群的数量。我搜索过 sklearn 或类似的库,但没有成功。 我猜它只是通过 knn 聚类
我有一个扁平数字列表,这些数字逻辑上以 3 为一组,其中每个三元组是 (number, __ignored, flag[0 or 1]),例如: [7,56,1, 8,0,0, 2,0,0, 6,1,
我正在使用 pipenv 来管理我的包。我想编写一个 python 脚本来调用另一个使用不同虚拟环境(VE)的 python 脚本。 如何运行使用 VE1 的 python 脚本 1 并调用另一个 p
假设我有一个文件 script.py 位于 path = "foo/bar/script.py"。我正在寻找一种在 Python 中通过函数 execute_script() 从我的主要 Python
这听起来像是谜语或笑话,但实际上我还没有找到这个问题的答案。 问题到底是什么? 我想运行 2 个脚本。在第一个脚本中,我调用另一个脚本,但我希望它们继续并行,而不是在两个单独的线程中。主要是我不希望第
我有一个带有 python 2.5.5 的软件。我想发送一个命令,该命令将在 python 2.7.5 中启动一个脚本,然后继续执行该脚本。 我试过用 #!python2.7.5 和http://re
我在 python 命令行(使用 python 2.7)中,并尝试运行 Python 脚本。我的操作系统是 Windows 7。我已将我的目录设置为包含我所有脚本的文件夹,使用: os.chdir("
剧透:部分解决(见最后)。 以下是使用 Python 嵌入的代码示例: #include int main(int argc, char** argv) { Py_SetPythonHome
假设我有以下列表,对应于及时的股票价格: prices = [1, 3, 7, 10, 9, 8, 5, 3, 6, 8, 12, 9, 6, 10, 13, 8, 4, 11] 我想确定以下总体上最
所以我试图在选择某个单选按钮时更改此框架的背景。 我的框架位于一个类中,并且单选按钮的功能位于该类之外。 (这样我就可以在所有其他框架上调用它们。) 问题是每当我选择单选按钮时都会出现以下错误: co
我正在尝试将字符串与 python 中的正则表达式进行比较,如下所示, #!/usr/bin/env python3 import re str1 = "Expecting property name
考虑以下原型(prototype) Boost.Python 模块,该模块从单独的 C++ 头文件中引入类“D”。 /* file: a/b.cpp */ BOOST_PYTHON_MODULE(c)
如何编写一个程序来“识别函数调用的行号?” python 检查模块提供了定位行号的选项,但是, def di(): return inspect.currentframe().f_back.f_l
我已经使用 macports 安装了 Python 2.7,并且由于我的 $PATH 变量,这就是我输入 $ python 时得到的变量。然而,virtualenv 默认使用 Python 2.6,除
我只想问如何加快 python 上的 re.search 速度。 我有一个很长的字符串行,长度为 176861(即带有一些符号的字母数字字符),我使用此函数测试了该行以进行研究: def getExe
list1= [u'%app%%General%%Council%', u'%people%', u'%people%%Regional%%Council%%Mandate%', u'%ppp%%Ge
这个问题在这里已经有了答案: Is it Pythonic to use list comprehensions for just side effects? (7 个答案) 关闭 4 个月前。 告
我想用 Python 将两个列表组合成一个列表,方法如下: a = [1,1,1,2,2,2,3,3,3,3] b= ["Sun", "is", "bright", "June","and" ,"Ju
我正在运行带有最新 Boost 发行版 (1.55.0) 的 Mac OS X 10.8.4 (Darwin 12.4.0)。我正在按照说明 here构建包含在我的发行版中的教程 Boost-Pyth
学习 Python,我正在尝试制作一个没有任何第 3 方库的网络抓取工具,这样过程对我来说并没有简化,而且我知道我在做什么。我浏览了一些在线资源,但所有这些都让我对某些事情感到困惑。 html 看起来
我是一名优秀的程序员,十分优秀!