- html - 出于某种原因,IE8 对我的 Sass 文件中继承的 html5 CSS 不友好?
- JMeter 在响应断言中使用 span 标签的问题
- html - 在 :hover and :active? 上具有不同效果的 CSS 动画
- html - 相对于居中的 html 内容固定的 CSS 重复背景?
我正在尝试针对文本分类任务微调 BERT,但我得到了 NaN 损失并且无法弄清楚原因。
首先,我定义了一个 BERT 分词器,然后对我的文本进行分词:
from transformers import DistilBertTokenizer, RobertaTokenizer
distil_bert = 'distilbert-base-uncased'
tokenizer = DistilBertTokenizer.from_pretrained(distil_bert, do_lower_case=True, add_special_tokens=True,
max_length=128, pad_to_max_length=True)
def tokenize(sentences, tokenizer):
input_ids, input_masks, input_segments = [],[],[]
for sentence in tqdm(sentences):
inputs = tokenizer.encode_plus(sentence, add_special_tokens=True, max_length=25, pad_to_max_length=True,
return_attention_mask=True, return_token_type_ids=True)
input_ids.append(inputs['input_ids'])
input_masks.append(inputs['attention_mask'])
input_segments.append(inputs['token_type_ids'])
return np.asarray(input_ids, dtype='int32'), np.asarray(input_masks, dtype='int32'), np.asarray(input_segments, dtype='int32')
train = pd.read_csv('train_dataset.csv')
d = train['text']
input_ids, input_masks, input_segments = tokenize(d, tokenizer)
接下来,我加载我的整数标签,它们是:0、1、2、3。
d_y = train['label']
0 0
1 1
2 0
3 2
4 0
5 0
6 0
7 0
8 3
9 1
Name: label, dtype: int64
然后我加载预训练的 Transformer 模型并在其上放置层。我在编译模型时使用了 SparseCategoricalCrossEntropy Loss:
from transformers import TFDistilBertForSequenceClassification, DistilBertConfig, AutoTokenizer, TFDistilBertModel
distil_bert = 'distilbert-base-uncased'
optimizer = tf.keras.optimizers.RMSprop(learning_rate=0.0000001)
config = DistilBertConfig(num_labels=4, dropout=0.2, attention_dropout=0.2)
config.output_hidden_states = False
transformer_model = TFDistilBertModel.from_pretrained(distil_bert, config = config)
input_ids_in = tf.keras.layers.Input(shape=(25,), name='input_token', dtype='int32')
input_masks_in = tf.keras.layers.Input(shape=(25,), name='masked_token', dtype='int32')
embedding_layer = transformer_model(input_ids_in, attention_mask=input_masks_in)[0]
X = tf.keras.layers.Bidirectional(tf.keras.layers.LSTM(50, return_sequences=True, dropout=0.1, recurrent_dropout=0.1))(embedding_layer)
X = tf.keras.layers.GlobalMaxPool1D()(X)
X = tf.keras.layers.Dense(50, activation='relu')(X)
X = tf.keras.layers.Dropout(0.2)(X)
X = tf.keras.layers.Dense(4, activation='softmax')(X)
model = tf.keras.Model(inputs=[input_ids_in, input_masks_in], outputs = X)
for layer in model.layers[:3]:
layer.trainable = False
model.compile(optimizer='adam',
loss='sparse_categorical_crossentropy',
metrics=['sparse_categorical_accuracy'],
)
最后,我使用之前标记化的 input_ids 和 input_masks 作为模型的输入来运行模型,并在第一个时期后获得 NAN 损失:
model.fit(x=[input_ids, input_masks], y = d_y, epochs=3)
Epoch 1/3
20/20 [==============================] - 4s 182ms/step - loss: 0.9714 - sparse_categorical_accuracy: 0.6153
Epoch 2/3
20/20 [==============================] - 0s 19ms/step - loss: nan - sparse_categorical_accuracy: 0.5714
Epoch 3/3
20/20 [==============================] - 0s 20ms/step - loss: nan - sparse_categorical_accuracy: 0.5714
<tensorflow.python.keras.callbacks.History at 0x7fee0e220f60>
编辑:模型在第一个时期计算损失,但它开始返回 NaN在第二个时代。是什么导致了这个问题???
有人知道我做错了什么吗?欢迎所有建议!
最佳答案
问题出在这里:
X = tf.keras.layers.Dense(1, activation='softmax')(X)
在网络的末端,您只有一个神经元,对应于一个类。类别 0 的输出概率始终为 100%。如果您有类别 0、1、2、3,则最后需要有 4 个输出。
关于machine-learning - BERT HuggingFace 给出 NaN 损失,我们在Stack Overflow上找到一个类似的问题: https://stackoverflow.com/questions/62436178/
我是pytorch的新手。请问添加'loss.item()'有什么区别?以下2部分代码: for epoch in range(epochs): trainingloss =0 for
我有一个包含 4 列的 MySQL 表,如下所示。 TransactionID | Item | Amount | Date ------------------------------------
我目前正在使用 cocos2d、Box2D 和 Objective-C 为 iPad 和 iPhone 制作游戏。 每次更新都会发生很多事情,很多事情必须解决。 我最近将我的很多代码重构为几个小方法,
我一直在关注 Mixed Precision Guide .因此,我正在设置: keras.mixed_precision.set_global_policy(mixed_precision) 像这样
double lnumber = Math.pow(2, 1000); 打印 1.0715086071862673E301 我尝试过的事情 我尝试使用 BigDecimal 类来扩展这个数字: St
我正在尝试创建一个神经网络来近似函数(正弦、余弦、自定义...),但我在格式上遇到困难,我不想使用输入标签,而是使用输入输出。我该如何更改它? 我正在关注this tutorial import te
我有一个具有 260,000 行和 35 列的“单热编码”(全一和零)数据矩阵。我正在使用 Keras 训练一个简单的神经网络来预测一个连续变量。制作网络的代码如下: model = Sequenti
什么是像素级 softmax 损失?在我的理解中,这只是一个交叉熵损失,但我没有找到公式。有人能帮我吗?最好有pytorch代码。 最佳答案 您可以阅读 here所有相关内容(那里还有一个指向源代码的
我正在训练一个 CNN 架构来使用 PyTorch 解决回归问题,其中我的输出是一个 20 个值的张量。我计划使用 RMSE 作为模型的损失函数,并尝试使用 PyTorch 的 nn.MSELoss(
在每个时代结束时,我得到例如以下输出: Epoch 1/25 2018-08-06 14:54:12.555511: 2/2 [==============================] - 86
我正在使用 Keras 2.0.2 功能 API (Tensorflow 1.0.1) 来实现一个网络,该网络接受多个输入并产生两个输出 a 和 b。我需要使用 cosine_proximity 损失
我正在尝试设置很少层的神经网络,这将解决简单的回归问题,这应该是f(x) = 0,1x 或 f(x) = 10x 所有代码如下所示(数据生成和神经网络) 4 个带有 ReLu 的全连接层 损失函数 R
我正在研究在 PyTorch 中使用带有梯度惩罚的 Wasserstein GAN,但始终得到大的、正的生成器损失,并且随着时间的推移而增加。 我从 Caogang's implementation
我正在尝试在 TensorFlow 中实现最大利润损失。这个想法是我有一些积极的例子,我对一些消极的例子进行了采样,并想计算类似的东西 其中 B 是我的批处理大小,N 是我要使用的负样本数。 我是 t
我正在尝试预测一个连续值(第一次使用神经网络)。我已经标准化了输入数据。我不明白为什么我会收到 loss: nan从第一个纪元开始的输出。 我阅读并尝试了以前对同一问题的回答中的许多建议,但没有一个对
我目前正在学习神经网络,并尝试训练 MLP 以使用 Python 中的反向传播来学习 XOR。该网络有两个隐藏层(使用 Sigmoid 激活)和一个输出层(也是 Sigmoid)。 网络(大约 20,
尝试在 keras 中自定义损失函数(平滑 L1 损失),如下所示 ValueError: Shape must be rank 0 but is rank 5 for 'cond/Switch' (
我试图在 tensorflow 中为门牌号图像创建一个卷积神经网络 http://ufldl.stanford.edu/housenumbers/ 当我运行我的代码时,我在第一步中得到了 nan 的成
我正在尝试使用我在 Keras 示例( https://github.com/keras-team/keras/blob/master/examples/variational_autoencoder
我试图了解 CTC 损失如何用于语音识别以及如何在 Keras 中实现它。 我认为我理解的内容(如果我错了,请纠正我!)总体而言,CTC 损失被添加到经典网络之上,以便逐个元素(对于文本或语音而言逐个
我是一名优秀的程序员,十分优秀!