gpt4 book ai didi

python - 检查两个轮廓是否相交?

转载 作者:行者123 更新时间:2023-12-02 16:35:48 27 4
gpt4 key购买 nike

我从cont1收到了2个轮廓(cont2cv2.findContours())。我怎么知道它们是否相交?我不需要坐标,我只需要一个 bool(boolean) TrueFalse

我尝试了不同的方式,并且已经尝试与

if ((cont1 & cont2).area() > 0):

...
但是出现了错误,该数组没有方法“Area()”
...
cont1array = cv2.findContours(binary1, cv2.RETR_LIST, cv2.CHAIN_APPROX_SIMPLE)[0]
cont2array = cv2.findContours(binary2, cv2.RETR_LIST, cv2.CHAIN_APPROX_SIMPLE)[0]
...

for cont1 in cont1array:
for cont2 in cont2array:
print("cont1")
print(cont1)
print(type(cont1))
print("cont2")
print(cont2)
print(type(cont2))
> if cont1 and cont2 intersect: #i dont know how check intersect
print("yes they intersect")
else:
print("no they do not intersect")

# cont1
# [[172 302]
# [261 301]
# [262 390]
# [173 391]]
# <class 'numpy.ndarray'>
# cont2
# [[ 0 0]
# [ 0 699]
# [499 699]
# [499 0]]
# <class 'numpy.ndarray'>

最佳答案

一旦从cv2.findContours()获得了两个轮廓,就可以使用按位AND操作来检测交点。具体来说,我们可以使用 np.logical_and() 。想法是为每个轮廓创建两个单独的图像,然后对它们使用逻辑AND操作。具有正值的任何点(1True)将是相交点。因此,由于您只想获取是否存在相交的 bool(boolean) 值,因此我们可以检查相交的图像以查看是否存在单个正值。本质上,如果整个数组是False,则轮廓之间就没有交集。但是,如果只有一个True,则轮廓会接触并因此相交。

def contourIntersect(original_image, contour1, contour2):
# Two separate contours trying to check intersection on
contours = [contour1, contour2]

# Create image filled with zeros the same size of original image
blank = np.zeros(original_image.shape[0:2])

# Copy each contour into its own image and fill it with '1'
image1 = cv2.drawContours(blank.copy(), contours, 0, 1)
image2 = cv2.drawContours(blank.copy(), contours, 1, 1)

# Use the logical AND operation on the two images
# Since the two images had bitwise and applied to it,
# there should be a '1' or 'True' where there was intersection
# and a '0' or 'False' where it didnt intersect
intersection = np.logical_and(image1, image2)

# Check if there was a '1' in the intersection
return intersection.any()

示例

原始图片

enter image description here

检测到轮廓

enter image description here

现在,我们将两个检测到的轮廓传递给函数,并获得此交集数组:
[[False False False ... False False False]
[False False False ... False False False]
[False False False ... False False False]
...
[False False False ... False False False]
[False False False ... False False False]
[False False False ... False False False]]

我们检查 intersection数组以查看 True是否存在。我们将获得等高线相交的 True1以及不相交的 False0
return intersection.any()

这样我们得到

False



完整代码
import cv2
import numpy as np

def contourIntersect(original_image, contour1, contour2):
# Two separate contours trying to check intersection on
contours = [contour1, contour2]

# Create image filled with zeros the same size of original image
blank = np.zeros(original_image.shape[0:2])

# Copy each contour into its own image and fill it with '1'
image1 = cv2.drawContours(blank.copy(), contours, 0, 1)
image2 = cv2.drawContours(blank.copy(), contours, 1, 1)

# Use the logical AND operation on the two images
# Since the two images had bitwise AND applied to it,
# there should be a '1' or 'True' where there was intersection
# and a '0' or 'False' where it didnt intersect
intersection = np.logical_and(image1, image2)

# Check if there was a '1' in the intersection array
return intersection.any()

original_image = cv2.imread("base.png")
image = original_image.copy()

cv2.imshow("original", image)
gray = cv2.cvtColor(image, cv2.COLOR_BGR2GRAY)
cv2.imshow("gray", gray)
blurred = cv2.GaussianBlur(gray, (5,5), 0)
cv2.imshow("blur", blurred)
threshold = cv2.threshold(blurred, 60, 255, cv2.THRESH_BINARY)[1]
cv2.imshow("thresh", threshold)

contours = cv2.findContours(threshold.copy(), cv2.RETR_EXTERNAL, cv2.CHAIN_APPROX_SIMPLE)
# Depending on OpenCV version, number of arguments return by cv.findContours
# is either 2 or 3
contours = contours[1] if len(contours) == 3 else contours[0]

contour_list = []
for c in contours:
contour_list.append(c)
cv2.drawContours(image, [c], 0, (0,255,0), 2)

print(contourIntersect(original_image, contour_list[0], contour_list[1]))
cv2.imshow("contour", image)
cv2.waitKey(0)

关于python - 检查两个轮廓是否相交?,我们在Stack Overflow上找到一个类似的问题: https://stackoverflow.com/questions/60502281/

27 4 0
Copyright 2021 - 2024 cfsdn All Rights Reserved 蜀ICP备2022000587号
广告合作:1813099741@qq.com 6ren.com