gpt4 book ai didi

python - 为什么垂直线坐标会变化?

转载 作者:行者123 更新时间:2023-12-02 16:33:49 24 4
gpt4 key购买 nike

我正在尝试使用openCV和Azure read从表中提取文本。目标是明智地提取文本列。因此,要执行的第一步是检测image(table)中的垂直线。现在,使用这些垂直线的坐标作为极端边界,我们可以识别这些线之间的文本。

从而基于垂直线过滤器获得文本。

尽管脚本运行良好,但我观察到一种情况,即对于一种特定类型的表(类型A),行坐标发生不合适。因此,在调试之后,我们发现问题出在表的标题部分(仅适用于Type A)。

因此,当我们消除(裁剪图像)表的标题部分(类型A)时,垂直线坐标是合适的。

坐标格式为(x,y,w,h)。
x和y是垂直线的最高点。
w是线的宽度(在垂直线中最大为2像素)。
h是垂直线的高度。

我在这里附上两种情况:
1.带有标题的表格-坐标错误。
Actual ImageBinarized Vertical lines of Actual Image

带有标题的垂直线的坐标(从左到右)-
[(9,0,14,439),(213,0,93,426),(337,28,1,398),(397,29,1,410),(470,29,1,397) ,(522,0,12,439)]

  • 不带标题的表格-给出适当的坐标。
    Image without headingsWithout headings

  • 没有标题的垂直线的坐标(从左到右)
    [(7,0,1,404),(303,0,1,391),(335,0,1,391),(395,0,1,404),(468,0,1,391) ,(531,0,1,404)]

    我们可以观察到第二行的坐标变化很大,而其他行却很接近。
    因此,问题在于,带有标题的图像中的第二条垂直线坐标不正确。可能是什么原因?

    最佳答案

    可能是由于指定了用于滤除垂直线的阈值。
    Results

    import numpy as np
    import sys
    import cv2 as cv

    def show_wait_destroy(winname, img):
    cv.imshow(winname, img)
    cv.moveWindow(winname, 500, 0)
    cv.waitKey(0)
    cv.destroyWindow(winname)

    def main(argv):
    # [load_image]
    # Check number of arguments
    if len(argv) < 1:
    print ('Not enough parameters')
    print ('Usage:\nmorph_lines_detection.py < path_to_image >')
    return -1
    # Load the image
    src = cv.imread(argv[0], cv.IMREAD_COLOR)
    # Check if image is loaded fine
    if src is None:
    print ('Error opening image: ' + argv[0])
    return -1
    # Show source image
    cv.imshow("src", src)
    # [load_image]
    # [gray]
    # Transform source image to gray if it is not already
    if len(src.shape) != 2:
    gray = cv.cvtColor(src, cv.COLOR_BGR2GRAY)
    else:
    gray = src
    # Show gray image
    show_wait_destroy("gray", gray)
    # [gray]
    # [bin]
    # Apply adaptiveThreshold at the bitwise_not of gray, notice the ~ symbol
    gray = cv.bitwise_not(gray)
    bw = cv.adaptiveThreshold(gray, 255, cv.ADAPTIVE_THRESH_MEAN_C, \
    cv.THRESH_BINARY, 15, -2)
    # Show binary image
    show_wait_destroy("binary", bw)
    # [bin]
    # [init]
    # Create the images that will use to extract the horizontal and vertical lines
    horizontal = np.copy(bw)
    vertical = np.copy(bw)
    # [init]
    # [horiz]
    # Specify size on horizontal axis
    cols = horizontal.shape[1]
    horizontal_size = cols // 30
    # Create structure element for extracting horizontal lines through morphology operations
    horizontalStructure = cv.getStructuringElement(cv.MORPH_RECT, (horizontal_size, 1))
    # Apply morphology operations
    horizontal = cv.erode(horizontal, horizontalStructure)
    horizontal = cv.dilate(horizontal, horizontalStructure)
    # Show extracted horizontal lines
    show_wait_destroy("horizontal", horizontal)
    # [horiz]
    # [vert]
    # Specify size on vertical axis
    rows = vertical.shape[0]
    verticalsize = rows // 10 #####--->>>>>This decides the threshold for vertical line
    # Create structure element for extracting vertical lines through morphology operations
    verticalStructure = cv.getStructuringElement(cv.MORPH_RECT, (1, verticalsize))
    # Apply morphology operations
    vertical = cv.erode(vertical, verticalStructure)
    vertical = cv.dilate(vertical, verticalStructure)
    # Show extracted vertical lines
    show_wait_destroy("vertical", vertical)
    # [vert]
    # [smooth]
    # Inverse vertical image
    vertical = cv.bitwise_not(vertical)
    show_wait_destroy("vertical_bit", vertical)
    '''
    Extract edges and smooth image according to the logic
    1. extract edges
    2. dilate(edges)
    3. src.copyTo(smooth)
    4. blur smooth img
    5. smooth.copyTo(src, edges)
    '''
    # Step 1
    edges = cv.adaptiveThreshold(vertical, 255, cv.ADAPTIVE_THRESH_MEAN_C, \
    cv.THRESH_BINARY, 3, -2)
    show_wait_destroy("edges", edges)
    # Step 2
    kernel = np.ones((2, 2), np.uint8)
    edges = cv.dilate(edges, kernel)
    show_wait_destroy("dilate", edges)
    # Step 3
    smooth = np.copy(vertical)
    # Step 4
    smooth = cv.blur(smooth, (2, 2))
    # Step 5[![enter image description here][1]][1]
    (rows, cols) = np.where(edges != 0)
    vertical[rows, cols] = smooth[rows, cols]
    # Show final result
    show_wait_destroy("smooth - final", vertical)
    # [smooth]
    return 0
    if __name__ == "__main__":
    main(sys.argv[1:])
    ####to run the script use >>>>python image.py path/to/image

    关于python - 为什么垂直线坐标会变化?,我们在Stack Overflow上找到一个类似的问题: https://stackoverflow.com/questions/61650831/

    24 4 0
    Copyright 2021 - 2024 cfsdn All Rights Reserved 蜀ICP备2022000587号
    广告合作:1813099741@qq.com 6ren.com