gpt4 book ai didi

python - 将纹理特征集成到基于颜色的视频帧目标检测中

转载 作者:行者123 更新时间:2023-12-02 16:22:52 25 4
gpt4 key购买 nike

我正在做一个项目,在这个项目中我必须从鸟瞰 Angular 检测有色车辆。请参阅下面的图片框
vehicle
因为我认为对于这种情况,深度学习是过大的,所以我决定采用直方图反投影方法来检测红色车辆,从而选择经典的检测管道。
我使用的代码如下所示

#import packages
import cv2
import numpy as np
import matplotlib.pyplot as plt

#defining disk for the convolution
disc = cv2.getStructuringElement(cv2.MORPH_RECT,(10,10))
#defining Kernel
kernel=cv2.getStructuringElement(cv2.MORPH_RECT, (3,3))
kernel1 = np.ones((5,5),np.uint8)



#preparing the object model by cropping the target object and reading it
Red_Model=cv2.imread(r'C:/Users/kjbaili/.spyder-py3/webcam_calib/red_new_uniform.png')

#convert object_model to hsv
hsv_red = cv2.cvtColor(Red_Model, cv2.COLOR_BGR2HSV)
cv2.imshow('HSV_Model',hsv_red)

#calculating histogram of object_model
M = cv2.calcHist([hsv_red],[0,1],None,[180,256],[0,180,0,256])

#reading the image where we want to search for the target object
img=cv2.imread(r'C:/Users/kjbaili/.spyder-py3/Mean_Shift/MST_with_3D_projection/messigray1.png')

#converting the image to hsv
hsv_img = cv2.cvtColor(img, cv2.COLOR_BGR2HSV)

#calculating histogram of image
I= cv2.calcHist([hsv_img],[0,1],None,[180,256],[0,180,0,256])

#calculating the ration histogram
R=M.copy() /I.copy()

#extracting the image channels
h,s,v = cv2.split(hsv_img.copy())



#backprojecting the R_red hist
B1 = R[h.ravel(),s.ravel()]

#reshaping the resulted vector into image and normalize the values between 0 and 1
B2=B1.reshape(hsv_img.copy().shape[:2])
B = np.minimum(B1.copy(),1)
B = B.reshape(hsv_img.copy().shape[:2])




#removing noises
open_B_red=cv2.morphologyEx(B.copy(),cv2.MORPH_OPEN,kernel)
Filter_red=cv2.filter2D(open_B_red.copy(),-1,disc,open_B_red)

#displaying results
cv2.imshow('Filter',Filter_red)



cv2.waitKey(0)
cv2.destroyAllWindows()
该算法适用于所示的效果(请参见结果蒙版图像)
enter image description here
但是,当对象的颜色与背景颜色 相似(如下面的图片)时,它也会检测到我的T恤,它会检测到它们两者,因此无法仅区分目标对象
fails
因此,我想到 与颜色功能一起使用附加功能,以增强检测能力,以便尽管颜色相似度很小,它仍然可以检测到目标对象,因此得出了所谓的“ Local Binary Pattern-LBP”。 “,用于计算对象的纹理。实际上,我可以计算出对象和图像的LBP,但是不知道将其与上述方法集成在一起,以便通过颜色纹理检测来检测红色车辆。
因此,我非常欣赏在使用LBP的T exture功能或什至使用其他附加功能的情况下,如何改善检测的想法。
有关LBP的信息,请参见: https://towardsdatascience.com/face-recognition-how-lbph-works-90ec258c3d6b
有关直方图反向投影的工作原理的信息: https://theailearner.com/2019/04/18/histogram-backprojection/
这是原始图像:
image
这是结果面具
Mask
提前致谢

最佳答案

这是在Python / OpenCV中执行此操作的一种方法。颜色的第一阈值。然后应用一些形态来清洁无关区域。然后获取轮廓并在每个轮廓上循环。计算每个矩形的旋转矩形及其面积和纵横比(最大尺寸/最小尺寸)。过滤两个轮廓上的轮廓,并在输入图像上绘制白色轮廓和白色旋转矩形。
输入:
enter image description here

import cv2
import numpy as np

image = cv2.imread("red_car.png")
hh, ww = image.shape[:2]

# convert to HSV
hsv = cv2.cvtColor(image, cv2.COLOR_BGR2HSV)

# create a binary thresholded image
lower = (80,100,180)
upper = (255,255,255)
thresh = cv2.inRange(hsv, lower, upper)


# apply morphology
kernel = np.ones((5,5), np.uint8)
clean = cv2.morphologyEx(thresh, cv2.MORPH_CLOSE, kernel)

# get external contours
contours = cv2.findContours(clean, cv2.RETR_EXTERNAL, cv2.CHAIN_APPROX_SIMPLE)
contours = contours[0] if len(contours) == 2 else contours[1]

area_thresh1 = 500
area_thresh2 = 1000
aspect_thresh1 = 2
aspect_thresh2 = 4
result1 = image.copy()
result2 = image.copy()
for c in contours:

# get rotated rectangle from contour
# get its dimensions
# get angle relative to horizontal from rotated rectangle
rotrect = cv2.minAreaRect(c)
box = cv2.boxPoints(rotrect)
box = np.int0(box)
(center), (dim1,dim2), angle = rotrect
maxdim = max(dim1,dim2)
mindim = min(dim1,dim2)
area = dim1 * dim2
if area > 0:
aspect = maxdim / mindim
#print(area, aspect)

if area > area_thresh1 and area < area_thresh2 and aspect > aspect_thresh1 and aspect < aspect_thresh2:
# draw contour on input
cv2.drawContours(result1,[c],0,(255,255,255),1)
# draw rectangle on input
cv2.drawContours(result2,[box],0,(255,255,255),1)
print(area, aspect)

# save result
cv2.imwrite("red_car_thresh.png",thresh)
cv2.imwrite("red_car_clean.png",clean)
cv2.imwrite("red_car_thresh_result1.png",result1)
cv2.imwrite("red_car_thresh_result2.png",result2)

# display result
cv2.imshow("thresh", thresh)
cv2.imshow("clean", clean)
cv2.imshow("result1", result1)
cv2.imshow("result2", result2)
cv2.waitKey(0)
cv2.destroyAllWindows()

阈值图片:
enter image description here
形态清除图像:
enter image description here
汽车轮廓:
enter image description here
汽车旋转边界框:
enter image description here

关于python - 将纹理特征集成到基于颜色的视频帧目标检测中,我们在Stack Overflow上找到一个类似的问题: https://stackoverflow.com/questions/63885440/

25 4 0
Copyright 2021 - 2024 cfsdn All Rights Reserved 蜀ICP备2022000587号
广告合作:1813099741@qq.com 6ren.com