gpt4 book ai didi

python - 检测具有模糊边缘和不同背景的卡片边缘

转载 作者:行者123 更新时间:2023-12-02 16:14:53 25 4
gpt4 key购买 nike

这是我的测试照片

enter image description here

我正在寻找卡片的边缘。但是,如您所见,边缘有些模糊。

要找到边缘,我首先要增强图像的对比度,希望模糊的边缘不会那么模糊,并且更容易找到: enter image description here然后我使用高斯模糊对其进行了一点平滑(我尝试去除高斯模糊,但边缘检测器在背景中发现了许多细节+在卡片中)。

然后我使用带有“动态阈值”的 canny 并得到以下结果: enter image description here正如你所看到的,我发现了卡片的任何边缘(除了左边,因为背景很暗,这很容易)。是否有稳健的(我不想在此图像上“过度拟合”)方法来找到直线模糊边缘?

在这里找到了一些建议: Blurry edge detection How to find accurate corner positions of a distorted rectangle from blurry image in python? ,但都没有产生令人满意的边缘。

完整代码:

def auto_canny(image, sigma=0.5):
v = np.median(image)
lower = int(max(0, (1.0 - sigma) * v))
upper = int(min(255, (1.0 + sigma) * v))
return cv2.Canny(image, lower, upper)

def add_contrast(img, contrast_level=8):
lab = cv2.cvtColor(img, cv2.COLOR_BGR2LAB)

l, a, b = cv2.split(lab)

clahe = cv2.createCLAHE(clipLimit=3.0, tileGridSize=(contrast_level, contrast_level))
cl = clahe.apply(l)

limg = cv2.merge((cl, a, b))

final = cv2.cvtColor(limg, cv2.COLOR_LAB2BGR)

return final

# ------------------------------------------ #
# FIND EDGES
# ------------------------------------------ #
img = add_contrast(img=img, contrast_level=8)

gray = cv2.cvtColor(img, cv2.COLOR_BGR2GRAY)
cv2.imshow("gray", gray)

kernel_size = 5
blur_gray = cv2.GaussianBlur(gray, (kernel_size, kernel_size), 0)

edges = auto_canny(image=blur_gray)

# Show images for testing
cv2.imshow('edges', edges)
cv2.waitKey(0)
cv2.destroyAllWindows()

最佳答案

这也不是一个完整的解决方案,但如果红色部分有问题,您可以先使用 cv2.inpaint() 修复这些部分功能。然后,您可以应用其余方法来查找卡片边缘。

# create an inpainting mask with "red-enough" pixels
mask = cv2.inRange(img_src_rgb, np.array([200,0,0]), np.array([255,50,50]))
# enlarge the mask to cover the borders
kernel = np.ones((3,3),np.uint8)
mask = cv2.dilate(mask,kernel,iterations = 1)
# inpaint the red parts using Navier-Stokes based approach
img_dst = cv2.inpaint(img_src, mask,50,cv2.INPAINT_NS)
cv2.imshow("no_red", img_dst)

生成的图像如下。

enter image description here

编辑:既然我们知道您在问什么,下面是一个完整的解决方案。

修复后,您可以应用霍夫变换来找到图像中的强直线。

gray = cv2.cvtColor(img_dst, cv2.COLOR_RGB2GRAY)
edges = auto_canny(gray) # your auto_canny function, WITHOUT blur
lines = cv2.HoughLines(edges, 1, np.pi/90, 50)
for line in lines:
rho,theta = line[0]
a = np.cos(theta)
b = np.sin(theta)
x0 = a*rho
y0 = b*rho
x1 = int(x0 + 10000*(-b))
y1 = int(y0 + 10000*(a))
x2 = int(x0 - 10000*(-b))
y2 = int(y0 - 10000*(a))
cv2.line(img_dst,(x1,y1),(x2,y2),(0,255,0),1)

cv2.imwrite('linesDetected.jpg', img_dst)

同样,结果行如下。

enter image description here

关于python - 检测具有模糊边缘和不同背景的卡片边缘,我们在Stack Overflow上找到一个类似的问题: https://stackoverflow.com/questions/60504995/

25 4 0
Copyright 2021 - 2024 cfsdn All Rights Reserved 蜀ICP备2022000587号
广告合作:1813099741@qq.com 6ren.com