gpt4 book ai didi

r - 如何用 R 中另一个 tibble 的估算列替换 tibble 中的 NA 列

转载 作者:行者123 更新时间:2023-12-02 16:11:01 29 4
gpt4 key购买 nike

我想用 df 中的 NA 替换 de 列,使用 df2 中的估算值来获得 df3 .我可以使用 left_joincoalesce 来做到这一点,但我认为这种方法不能很好地概括。有没有更好的办法?

library(tidyverse)

df <- tibble(c = c("a", "a", "a", "b", "b", "b"),
d = c(1, 2, 3, 1, 2, 3),
x = c(1, NA, 3, 4, 5,6),
y = c(1, 2, NA, 4, 5, 6),
z = c(1, 2, 7, 4, 5, 6))

# I want to replace NA in df by df2

df2 <- tibble(c = c("a", "a", "a"),
d = c(1, 2, 3),
x = c(1, 2, 3),
y = c(1, 2, 2))

# to get

df3 <- tibble(c = c("a", "a", "a", "b", "b", "b"),
d = c(1, 2, 3, 1, 2, 3),
x = c(1, 2, 3, 4, 5, 6),
y = c(1, 2, 2, 4, 5, 6),
z = c(1, 2, 7, 4, 5, 6))

# is there a better solution than coalesce?

df3 <- df %>% left_join(df2, by = c("c", "d")) %>%
mutate(x = coalesce(x.x, x.y),
y = coalesce(y.x, y.y)) %>%
select(-x.x, -x.y, -y.x, -y.y)
Created on 2021-06-17 by the reprex package (v2.0.0)

最佳答案

这是一个合并所有 .x.y 列的自定义函数,可选择重命名和删除列。

#' Coalesce all columns duplicated in a previous join.
#'
#' Find all columns resulting from duplicate names after a join
#' operation (e.g., `dplyr::*_join` or `base::merge`), then coalesce
#' them pairwise.
#'
#' @param x data.frame
#' @param suffix character, length 2, the same string suffixes
#' appended to column names of duplicate columns; should be the same
#' as provided to `dplyr::*_join(., suffix=)` or `base::merge(.,
#' suffixes=)`
#' @param clean logical, whether to remove the suffixes from the LHS
#' columns and remove the columns on the RHS columns
#' @param strict logical, whether to enforce same-classes in the LHS
#' (".x") and RHS (".y") columns; while it is safer to set this to
#' true (default), sometimes the conversion of classes might be
#' acceptable, for instance, if one '.x' column is 'numeric' and its
#' corresponding '.y' column is 'integer', then relaxing the class
#' requirement might be acceptable
#' @return 'x', coalesced, optionally cleaned
#' @export
coalesce_all <- function(x, suffix = c(".x", ".y"),
clean = FALSE, strict = TRUE) {
nms <- colnames(x)
Xs <- endsWith(nms, suffix[1])
Ys <- endsWith(nms, suffix[2])
# x[Xs] <- Map(dplyr::coalesce, x[Xs], x[Ys])
# x[Xs] <- Map(data.table::fcoalesce, x[Xs], x[Ys])
x[Xs] <- Map(function(dotx, doty) {
if (strict) stopifnot(identical(class(dotx), class(doty)))
isna <- is.na(dotx)
replace(dotx, isna, doty[isna])
} , x[Xs], x[Ys])
if (clean) {
names(x)[Xs] <- gsub(glob2rx(paste0("*", suffix[1]), trim.head = TRUE), "", nms[Xs])
x[Ys] <- NULL
}
x
}

在行动中:

df %>%
left_join(df2, by = c("c", "d")) %>%
coalesce_all()
# # A tibble: 6 x 7
# c d x.x y.x z x.y y.y
# <chr> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl>
# 1 a 1 1 1 1 1 1
# 2 a 2 2 2 2 2 2
# 3 a 3 3 2 7 3 2
# 4 b 1 4 4 4 NA NA
# 5 b 2 5 5 5 NA NA
# 6 b 3 6 6 6 NA NA

df %>%
left_join(df2, by = c("c", "d")) %>%
coalesce_all(clean = TRUE)
# # A tibble: 6 x 5
# c d x y z
# <chr> <dbl> <dbl> <dbl> <dbl>
# 1 a 1 1 1 1
# 2 a 2 2 2 2
# 3 a 3 3 2 7
# 4 b 1 4 4 4
# 5 b 2 5 5 5
# 6 b 3 6 6 6

我在 Map 中包含了两个合并函数作为 base-R 的替代方法。一个优点是 strict 参数:dplyr::coalesce 将默默地允许 integernumeric 合并,而data.table::fcoalesce 没有。如果这是可取的,请使用您喜欢的。 (另一个优点是两个非基本合并函数都接受任意数量的列进行合并,这在本实现中不是必需的。)

关于r - 如何用 R 中另一个 tibble 的估算列替换 tibble 中的 NA 列,我们在Stack Overflow上找到一个类似的问题: https://stackoverflow.com/questions/68017981/

29 4 0
Copyright 2021 - 2024 cfsdn All Rights Reserved 蜀ICP备2022000587号
广告合作:1813099741@qq.com 6ren.com