- html - 出于某种原因,IE8 对我的 Sass 文件中继承的 html5 CSS 不友好?
- JMeter 在响应断言中使用 span 标签的问题
- html - 在 :hover and :active? 上具有不同效果的 CSS 动画
- html - 相对于居中的 html 内容固定的 CSS 重复背景?
我正在处理车牌,我所做的是对其应用一系列过滤器,例如:
问题是当我这样做时,边界处有一些像这张图片的轮廓,我该如何清除它们?或者让它只是黑色(蒙面)?我用过这段代码,但有时它会掉下来。
# invert image and detect contours
inverted = cv2.bitwise_not(image_binary_and_dilated)
contours, hierarchy = cv2.findContours(inverted,cv2.RETR_EXTERNAL,cv2.CHAIN_APPROX_SIMPLE)
# get the biggest contour
biggest_index = -1
biggest_area = -1
i = 0
for c in contours:
area = cv2.contourArea(c)
if area > biggest_area:
biggest_area = area
biggest_index = i
i = i+1
print("biggest area: " + str(biggest_area) + " index: " + str(biggest_index))
cv2.drawContours(image_binary_and_dilated, contours, biggest_index, [0,0,255])
center, size, angle = cv2.minAreaRect(contours[biggest_index])
rot_mat = cv2.getRotationMatrix2D(center, angle, 1.)
#cv2.warpPerspective()
print(size)
dst = cv2.warpAffine(inverted, rot_mat, (int(size[0]), int(size[1])))
mask = dst * 0
x1 = max([int(center[0] - size[0] / 2)+1, 0])
y1 = max([int(center[1] - size[1] / 2)+1, 0])
x2 = int(center[0] + size[0] / 2)-1
y2 = int(center[1] + size[1] / 2)-1
point1 = (x1, y1)
point2 = (x2, y2)
print(point1)
print(point2)
cv2.rectangle(dst, point1, point2, [0,0,0])
cv2.rectangle(mask, point1, point2, [255,255,255], cv2.FILLED)
masked = cv2.bitwise_and(dst, mask)
#cv2_imshow(imgg)
cv2_imshow(dst)
cv2_imshow(masked)
#cv2_imshow(mask)
一些结果:
原始盘子是:
二进制板是:
如何修复此代码?只是我想避免那个糟糕的结果或改善它。
最佳答案
简介
您的问题开始变得复杂,我相信不再有正确或错误答案,只是不同的方法。几乎所有这些都会产生正面和负面的结果,很可能是不同的比例。获得 100% 的积极结果是一项非常具有挑战性的任务,我相信我的答案没有达到目的。然而,它可以成为实现该目标的更复杂工作的基础。
我的建议
所以,我想在这里提出一个不同的建议。我不是 100% 确定您为什么要执行所有步骤,而且我相信其中一些步骤可能是不必要的。让我们从问题开始:您想删除边框上的白色部分(不是数字)。因此,我们需要了解如何将它们与字母区分开来,以便正确处理它们。如果我们只是尝试轮廓和扭曲,它可能适用于某些图像而不适用于其他图像,因为并非所有图像看起来都一样。这是最难找到适用于许多图像的通用解决方案的问题。
数字的特征和边框的特征(以及其他小点?)有什么区别?想了想,我会说:形状!这意味着,如果您想象一个字母/数字周围的边界框,它看起来就像一个矩形,其大小与图像大小相关。而在边界的情况下,它们通常又大又窄,或者太小而不能被视为字母/数字(随机点)。
因此,我的猜测是分割,通过形状划分特征。所以我们获取二进制图像,我们使用轴上的投影删除一些部分(正如您在 previous question 中正确询问的那样,我相信我们应该使用),我们得到一个图像,其中每个字母都与白色边框分开。然后我们可以分割并检查每个分割对象的形状,如果我们认为这些是字母,我们保留它们,否则我们丢弃它们。
代码
我之前写过代码作为你数据的例子。一些参数是针对这组图像进行调整的,因此对于更大的数据集可能需要放宽。
import cv2
import matplotlib.pyplot as plt
import numpy as np
%matplotlib inline
import scipy.ndimage as ndimage
# do this for all the images
num_images = 6
plt.figure(figsize=(16,16))
for k in range(num_images):
# read the image
binary_image = cv2.imread("binary_image/img{}.png".format(k), cv2.IMREAD_GRAYSCALE)
# just for visualization purposes, I create another image with the same shape, to show what I am doing
new_intermediate_image = np.zeros((binary_image.shape), np.uint8)
new_intermediate_image += binary_image
# here we will copy only the cleaned parts
new_cleaned_image = np.zeros((binary_image.shape), np.uint8)
### THIS CODE COMES FROM THE PREVIOUS ANSWER:
# https://stackoverflow.com/questions/62127537/how-to-clean-binary-image-using-horizontal-projection?noredirect=1&lq=1
(rows,cols)=binary_image.shape
h_projection = np.array([ x/rows for x in binary_image.sum(axis=0)])
threshold_h = (np.max(h_projection) - np.min(h_projection)) / 10
print("we will use threshold {} for horizontal".format(threshold))
# select the black areas
black_areas_horizontal = np.where(h_projection < threshold_h)
for j in black_areas_horizontal:
new_intermediate_image[:, j] = 0
v_projection = np.array([ x/cols for x in binary_image.sum(axis=1)])
threshold_v = (np.max(v_projection) - np.min(v_projection)) / 10
print("we will use threshold {} for vertical".format(threshold_v))
black_areas_vertical = np.where(v_projection < threshold_v)
for j in black_areas_vertical:
new_intermediate_image[j, :] = 0
### UNTIL HERE
# define the features we are looking for
# this parameters can also be tuned
min_width = binary_image.shape[1] / 14
max_width = binary_image.shape[1] / 2
min_height = binary_image.shape[0] / 5
max_height = binary_image.shape[0]
print("we look for feature with width in [{},{}] and height in [{},{}]".format(min_width, max_width, min_height, max_height))
# segment the iamge
labeled_array, num_features = ndimage.label(new_intermediate_image)
# loop over all features found
for i in range(num_features):
# get a bounding box around them
slice_x, slice_y = ndimage.find_objects(labeled_array==i)[0]
roi = labeled_array[slice_x, slice_y]
# check the shape, if the bounding box is what we expect, copy it to the new image
if roi.shape[0] > min_height and \
roi.shape[0] < max_height and \
roi.shape[1] > min_width and \
roi.shape[1] < max_width:
new_cleaned_image += (labeled_array == i)
# print all images on a grid
plt.subplot(num_images,3,1+(k*3))
plt.imshow(binary_image)
plt.subplot(num_images,3,2+(k*3))
plt.imshow(new_intermediate_image)
plt.subplot(num_images,3,3+(k*3))
plt.imshow(new_cleaned_image)
产生输出(在网格中,左边的图像是输入图像,中间的图像是基于直方图投影的掩码后的图像,右边是清理后的图像):
结论:
如上所述,此方法不会产生 100% 的阳性结果。最后一张图画质比较差,有些部分没有连起来,在处理过程中丢失了。我个人认为这是为了获得更清晰的图像而付出的代价,如果你有很多图像,那不会有问题,你可以删除那些图像。总的来说,我认为这种方法返回的图像非常清晰,所有其他非字母或数字的部分都被正确移除。
优势
图像干净,只保留字母或数字
参数可以调整,并且应该在图像之间保持一致
如果出现问题,在选择要保留的特征的循环中使用一些打印或一些调试应该可以更容易地理解问题出在哪里并纠正它们
限制
在某些情况下,当字母和数字触及 白色边框时,它可能会失败,这似乎很有可能。它是从使用投影创建的 black_areas 处理的,但我不太相信这会在 100% 的时间内起作用。
在这个过程中可能会丢失一些小部分数字,如上图所示。
关于python - 如何从图像中删除或清除轮廓?,我们在Stack Overflow上找到一个类似的问题: https://stackoverflow.com/questions/62190121/
我正在处理一组标记为 160 个组的 173k 点。我想通过合并最接近的(到 9 或 10 个组)来减少组/集群的数量。我搜索过 sklearn 或类似的库,但没有成功。 我猜它只是通过 knn 聚类
我有一个扁平数字列表,这些数字逻辑上以 3 为一组,其中每个三元组是 (number, __ignored, flag[0 or 1]),例如: [7,56,1, 8,0,0, 2,0,0, 6,1,
我正在使用 pipenv 来管理我的包。我想编写一个 python 脚本来调用另一个使用不同虚拟环境(VE)的 python 脚本。 如何运行使用 VE1 的 python 脚本 1 并调用另一个 p
假设我有一个文件 script.py 位于 path = "foo/bar/script.py"。我正在寻找一种在 Python 中通过函数 execute_script() 从我的主要 Python
这听起来像是谜语或笑话,但实际上我还没有找到这个问题的答案。 问题到底是什么? 我想运行 2 个脚本。在第一个脚本中,我调用另一个脚本,但我希望它们继续并行,而不是在两个单独的线程中。主要是我不希望第
我有一个带有 python 2.5.5 的软件。我想发送一个命令,该命令将在 python 2.7.5 中启动一个脚本,然后继续执行该脚本。 我试过用 #!python2.7.5 和http://re
我在 python 命令行(使用 python 2.7)中,并尝试运行 Python 脚本。我的操作系统是 Windows 7。我已将我的目录设置为包含我所有脚本的文件夹,使用: os.chdir("
剧透:部分解决(见最后)。 以下是使用 Python 嵌入的代码示例: #include int main(int argc, char** argv) { Py_SetPythonHome
假设我有以下列表,对应于及时的股票价格: prices = [1, 3, 7, 10, 9, 8, 5, 3, 6, 8, 12, 9, 6, 10, 13, 8, 4, 11] 我想确定以下总体上最
所以我试图在选择某个单选按钮时更改此框架的背景。 我的框架位于一个类中,并且单选按钮的功能位于该类之外。 (这样我就可以在所有其他框架上调用它们。) 问题是每当我选择单选按钮时都会出现以下错误: co
我正在尝试将字符串与 python 中的正则表达式进行比较,如下所示, #!/usr/bin/env python3 import re str1 = "Expecting property name
考虑以下原型(prototype) Boost.Python 模块,该模块从单独的 C++ 头文件中引入类“D”。 /* file: a/b.cpp */ BOOST_PYTHON_MODULE(c)
如何编写一个程序来“识别函数调用的行号?” python 检查模块提供了定位行号的选项,但是, def di(): return inspect.currentframe().f_back.f_l
我已经使用 macports 安装了 Python 2.7,并且由于我的 $PATH 变量,这就是我输入 $ python 时得到的变量。然而,virtualenv 默认使用 Python 2.6,除
我只想问如何加快 python 上的 re.search 速度。 我有一个很长的字符串行,长度为 176861(即带有一些符号的字母数字字符),我使用此函数测试了该行以进行研究: def getExe
list1= [u'%app%%General%%Council%', u'%people%', u'%people%%Regional%%Council%%Mandate%', u'%ppp%%Ge
这个问题在这里已经有了答案: Is it Pythonic to use list comprehensions for just side effects? (7 个答案) 关闭 4 个月前。 告
我想用 Python 将两个列表组合成一个列表,方法如下: a = [1,1,1,2,2,2,3,3,3,3] b= ["Sun", "is", "bright", "June","and" ,"Ju
我正在运行带有最新 Boost 发行版 (1.55.0) 的 Mac OS X 10.8.4 (Darwin 12.4.0)。我正在按照说明 here构建包含在我的发行版中的教程 Boost-Pyth
学习 Python,我正在尝试制作一个没有任何第 3 方库的网络抓取工具,这样过程对我来说并没有简化,而且我知道我在做什么。我浏览了一些在线资源,但所有这些都让我对某些事情感到困惑。 html 看起来
我是一名优秀的程序员,十分优秀!