gpt4 book ai didi

python - 为什么自适应阈值图像比原始图像小?

转载 作者:行者123 更新时间:2023-12-02 16:08:35 25 4
gpt4 key购买 nike

我正在尝试在最终将用于形状检测的实时流上使用 adapativeThreshold。常规阈值没有显示出我想看到的足够多的内容。当我使用下面的代码时,常规阈值按预期出现,但由于某种原因自适应阈值比原始阈值要薄得多,我在 View 中看不到任何内容。看起来好像发生了什么,但我不知道是什么。关于如何使自适应阈值窗口全尺寸的任何想法?

这是我在每个窗口中运行程序时看到的:
enter image description here

#import packages
from documentscanner.pyimagesearch.transform import four_point_transform
from pyimagesearch.shapedetector import ShapeDetector
from skimage.filters import threshold_local
import numpy as np
import cv2
import imutils


def draw_Contours(screen, points):
cv2.drawContours(screen, [points], -1, (0, 255, 0), 2)
cv2.imshow("Outline", screen)


def nothing(x):
#any operation
pass

#access video camera
cap = cv2.VideoCapture(0)

cv2.namedWindow('Trackbars')
cv2.createTrackbar('min_edge', 'Trackbars', 75, 100, nothing)
cv2.createTrackbar('max_edge', 'Trackbars', 110,300, nothing)

while True:
_, frame = cap.read() #read video camera data

minedge = cv2.getTrackbarPos('min_edge', 'Trackbars')
maxedge = cv2.getTrackbarPos('max_edge', 'Trackbars')

#convert image to gray scale
gray = cv2.cvtColor(frame, cv2.COLOR_BGR2GRAY)
gray = cv2.GaussianBlur(gray, (5, 5), 0)
#blur = cv2.GaussianBlur(frame, (5, 5), 0)
#edged = cv2.Canny(gray, minedge, maxedge)

#threshhold instead of edging
thresh = cv2.threshold(gray, 60, 255, cv2.THRESH_BINARY)[1]
thresh2 = cv2.adaptiveThreshold(gray, 255, cv2.ADAPTIVE_THRESH_GAUSSIAN_C,\
cv2.THRESH_BINARY, 11, 2)[1]
thresh3 = cv2.adaptiveThreshold(gray, 255, cv2.ADAPTIVE_THRESH_MEAN_C,\
cv2.THRESH_BINARY, 11, 2)[1]

#find contours in edges image, keeping the largest ones, and initialize the screen contour/shapedetect
cnts = cv2.findContours(thresh.copy(), cv2.RETR_EXTERNAL, cv2.CHAIN_APPROX_SIMPLE)
cnts = imutils.grab_contours(cnts)
sd = ShapeDetector()
cnts = sorted(cnts, key = cv2.contourArea, reverse = True)[:5]

#loop over contours
for c in cnts:
#approximate the contour points
peri = cv2.arcLength(c, True)
approx = cv2.approxPolyDP(c, 0.02*peri, True)

#check points in contour
if len(approx) == 4:
print("rectangle found: ")
print(approx)
draw_Contours(frame, approx)



if len(approx) == 3:
print("triangle found: ")
print(approx)
draw_Contours(frame, approx)

if len(approx) == 2:
print("line found: ")
print(approx)
draw_Contours(frame, approx)

#show the countour(outline) of the shapes


#show original frame and gray frame
cv2.imshow('Frame', frame)
#cv2.imshow('Copy', gray)
#cv2.imshow('Edged', edged)
cv2.imshow('Threshold', thresh)
cv2.imshow('ThresholdGaussian', thresh2)
cv2.imshow('ThresholdMean', thresh3)

#detect key press and exit with escape key
key = cv2.waitKey(1)
if key == 27:
break

#close the program
cap.release()
cv2.destroyAllWindows()

最佳答案

而不是使用

thresh2 = cv2.adaptiveThreshold(gray, 255, cv2.ADAPTIVE_THRESH_GAUSSIAN_C,\
cv2.THRESH_BINARY, 11, 2)[1]
thresh3 = cv2.adaptiveThreshold(gray, 255, cv2.ADAPTIVE_THRESH_MEAN_C,\
cv2.THRESH_BINARY, 11, 2)[1]

在没有 numpy 索引的情况下使用它,则不会发生此错误。
thresh2 = cv2.adaptiveThreshold(gray, 255, cv2.ADAPTIVE_THRESH_GAUSSIAN_C,\
cv2.THRESH_BINARY, 11, 2) # don't use [1]
thresh3 = cv2.adaptiveThreshold(gray, 255, cv2.ADAPTIVE_THRESH_MEAN_C,\
cv2.THRESH_BINARY, 11, 2)

这是因为正常阈值处理返回两个值,而自适应阈值处理仅返回一个值。

关于python - 为什么自适应阈值图像比原始图像小?,我们在Stack Overflow上找到一个类似的问题: https://stackoverflow.com/questions/60175194/

25 4 0
Copyright 2021 - 2024 cfsdn All Rights Reserved 蜀ICP备2022000587号
广告合作:1813099741@qq.com 6ren.com