gpt4 book ai didi

weka - Weka 上多层感知器建模结果的解释

转载 作者:行者123 更新时间:2023-12-02 16:04:53 26 4
gpt4 key购买 nike

我正在使用 Weka 上的多层感知器生成功率模型,Weka 是一个统计工具箱。

Weka 显示了以下生成的功率模型,但是,我不知道如何解释它。

如何使用 Weka 生成的模型计算预测值?我想知道如何用模型手动计算它。

谢谢。

=== Classifier model (full training set) ===

Linear Node 0
Inputs Weights
Threshold -0.040111709313733535
Node 1 -1.8468414006209548
Node 2 0.8245441127585728
Node 3 -0.6384807874184006
Node 4 -0.7484784535220612
Sigmoid Node 1
Inputs Weights
Threshold -0.24446294747264816
Attrib CPU-User -0.608249350584644
Attrib CPU-System 0.13288901868419942
Attrib CPU-Idle 1.0072001456456134
Attrib GPS 0.39886318520181463
Attrib WIFI 2.661390547312707
Attrib Disk-Write 3.3144190265114104
Attrib Screen -0.18379082022126372
Sigmoid Node 2
Inputs Weights
Threshold -0.04552879905091134
Attrib CPU-User 1.2010400180021503
Attrib CPU-System -0.415901207849663
Attrib CPU-Idle -1.8201808907618635
Attrib GPS 0.3297713837591742
Attrib WIFI 2.670046643619425
Attrib Disk-Write 1.0132120671943607
Attrib Screen 1.5785512067159402
Sigmoid Node 3
Inputs Weights
Threshold -7.438472914350278
Attrib CPU-User -6.382669043988483
Attrib CPU-System -1.6622872921207548
Attrib CPU-Idle -0.12729502604878612
Attrib GPS -0.9716992577028621
Attrib WIFI 0.6911695390337304
Attrib Disk-Write -1.1769266028873722
Attrib Screen 0.5101113538728531
Sigmoid Node 4
Inputs Weights
Threshold -5.509838959208244
Attrib CPU-User -0.3709271557180943
Attrib CPU-System -1.7448007514288941
Attrib CPU-Idle -0.08176108597065958
Attrib GPS -1.0234447340811823
Attrib WIFI -1.5759133030274077
Attrib Disk-Write 0.2376861365371351
Attrib Screen -1.5654514081278506
Class
Input
Node 0


Time taken to build model: 0.81 seconds

=== Predictions ontest split===

inst#, actual, predicted, error
1 153727.273 169587.843 15860.57
2 159036.364 168657.043 9620.68
....

最佳答案

This presentation给出了用于神经网络的背景和方程的一些细节。 Weka 的输出为您提供每个节点的类型以及输入和权重。您应该能够使用该信息自行计算数字。

关于weka - Weka 上多层感知器建模结果的解释,我们在Stack Overflow上找到一个类似的问题: https://stackoverflow.com/questions/9748218/

26 4 0
Copyright 2021 - 2024 cfsdn All Rights Reserved 蜀ICP备2022000587号
广告合作:1813099741@qq.com 6ren.com