- html - 出于某种原因,IE8 对我的 Sass 文件中继承的 html5 CSS 不友好?
- JMeter 在响应断言中使用 span 标签的问题
- html - 在 :hover and :active? 上具有不同效果的 CSS 动画
- html - 相对于居中的 html 内容固定的 CSS 重复背景?
信息:
我已经校准了我的相机,发现相机的内在矩阵 (K) 及其畸变系数 (d) 如下所示:
import numpy as np
K = np.asarray([[556.3834638575809,0,955.3259939726225],[0,556.2366649196925,547.3011305411478],[0,0,1]])
d = np.asarray([[-0.05165940570900624],[0.0031093602070252167],[-0.0034036648250202746],[0.0003390345044343793]])
从这里开始,我可以使用以下三行来取消扭曲我的图像:
final_K = cv2.fisheye.estimateNewCameraMatrixForUndistortRectify(K, d, (1920, 1080), np.eye(3), balance=1.0)
map_1, map_2 = cv2.fisheye.initUndistortRectifyMap(K, d, np.eye(3), final_K, (1920, 1080), cv2.CV_32FC1)
undistorted_image = cv2.remap(image, map_1, map_2, interpolation=cv2.INTER_LINEAR, borderMode=cv2.BORDER_CONSTANT)
生成的未失真图像似乎是正确的 Left image is distorted, right is undistorted ,但是当我尝试使用 cv2.remap()
来消除图像点失真时,点未映射到与其在图像中对应的像素相同的位置。我使用
ret, corners = cv2.findChessboardCorners(gray, (6,8),cv2.CALIB_CB_ADAPTIVE_THRESH+cv2.CALIB_CB_FAST_CHECK+cv2.CALIB_CB_NORMALIZE_IMAGE)
corners2 = cv2.cornerSubPix(gray, corners, (3,3), (-1,-1), (cv2.TERM_CRITERIA_EPS + cv2.TERM_CRITERIA_MAX_ITER, 30, 0.1))
然后按以下方式重新映射这些点:
remapped_points = []
for corner in corners2:
remapped_points.append(
(map_1[int(corner[0][1]), int(corner[0][0])], map_2[int(corner[0][1]), int(corner[0][0])])
)
In these horizontally concatenated images ,左图显示了在扭曲图像中检测到的点,而右图显示了右图中点的重新映射位置。
此外,我无法使用 cv2.fisheye.undistortPoints()
获得正确的结果。我有以下功能来消除扭曲点:
def undistort_list_of_points(point_list, in_K, in_d):
K = np.asarray(in_K)
d = np.asarray(in_d)
# Input can be list of bbox coords, poly coords, etc.
# TODO -- Check if point behind camera?
points_2d = np.asarray(point_list)
points_2d = points_2d[:, 0:2].astype('float32')
points2d_undist = np.empty_like(points_2d)
points_2d = np.expand_dims(points_2d, axis=1)
result = np.squeeze(cv2.fisheye.undistortPoints(points_2d, K, d))
fx = K[0, 0]
fy = K[1, 1]
cx = K[0, 2]
cy = K[1, 2]
for i, (px, py) in enumerate(result):
points2d_undist[i, 0] = px * fx + cx
points2d_undist[i, 1] = py * fy + cy
return points2d_undist
This image显示使用上述函数去失真时的结果。
(这一切都在 Python 3.6.8 的 Ubuntu 18.04 上的 OpenCV 4.2.0 中运行)
问题
为什么图像坐标的重新映射不能正常工作?我是否错误地使用了 map_1
和 map_2
?
为什么使用 cv2.fisheye.undistortPoints()
的结果与使用 map_1
和 map_2
的结果不同?
最佳答案
您没有正确使用 map_1 和 map_2。
cv2.fisheye.initUndistortRectifyMap 函数生成的 map 应该是目标图像的像素位置到源图像的像素位置的映射,即 dst (x,y)=src(mapx(x,y),mapy(x,y))。见remap在 OpenCV 中。
代码中,map_1为x方向像素映射,map_2为y方向像素映射。例如,(X_undistorted, Y_undistorted) 是未失真图像中的像素位置。 map_1[Y_undistorted, X_undistorted] 告诉你这个像素应该映射到扭曲图像中的 x 坐标,map_2 会给你相应的 y 坐标。
因此,map_1 和 map_2 对于从扭曲的图像构建未扭曲的图像很有用,并不真正适用于逆过程。
remapped_points = []
for corner in corners2:
remapped_points.append(
(map_1[int(corner[0][1]), int(corner[0][0])], map_2[int(corner[0][1]), int(corner[0][0])]))
此代码用于查找角落的未失真像素位置是不正确的。您将需要使用 undistortPoints 函数。
映射和不失真是不同的。
您可以认为映射是根据未失真图像中的像素位置和像素图构建未失真图像,而未失真是使用镜头失真模型使用原始像素位置找到未失真像素位置。
为了在未失真的图像中找到角点的正确像素位置。您需要使用新估计的 K 将未失真点的归一化坐标转换回像素坐标,在您的情况下,它是 final_K,因为未失真的图像可以看作是由相机拍摄的final_K 没有失真(有一个小的缩放效果)。
这里是修改后的 undistort 函数:
def undistort_list_of_points(point_list, in_K, in_d, in_K_new):
K = np.asarray(in_K)
d = np.asarray(in_d)
# Input can be list of bbox coords, poly coords, etc.
# TODO -- Check if point behind camera?
points_2d = np.asarray(point_list)
points_2d = points_2d[:, 0:2].astype('float32')
points2d_undist = np.empty_like(points_2d)
points_2d = np.expand_dims(points_2d, axis=1)
result = np.squeeze(cv2.fisheye.undistortPoints(points_2d, K, d))
K_new = np.asarray(in_K_new)
fx = K_new[0, 0]
fy = K_new[1, 1]
cx = K_new[0, 2]
cy = K_new[1, 2]
for i, (px, py) in enumerate(result):
points2d_undist[i, 0] = px * fx + cx
points2d_undist[i, 1] = py * fy + cy
return points2d_undist
import cv2
import numpy as np
import matplotlib.pyplot as plt
K = np.asarray([[556.3834638575809,0,955.3259939726225],[0,556.2366649196925,547.3011305411478],[0,0,1]])
D = np.asarray([[-0.05165940570900624],[0.0031093602070252167],[-0.0034036648250202746],[0.0003390345044343793]])
print("K:\n", K)
print("D:\n", D.ravel())
# read image and get the original image on the left
image_path = "sample.jpg"
image = cv2.imread(image_path)
image = image[:, :image.shape[1]//2, :]
image_gray = cv2.cvtColor(image, cv2.COLOR_BGR2GRAY)
fig = plt.figure()
plt.imshow(image_gray, "gray")
H_in, W_in = image_gray.shape
print("Grayscale Image Dimension:\n", (W_in, H_in))
scale_factor = 1.0
balance = 1.0
img_dim_out =(int(W_in*scale_factor), int(H_in*scale_factor))
if scale_factor != 1.0:
K_out = K*scale_factor
K_out[2,2] = 1.0
K_new = cv2.fisheye.estimateNewCameraMatrixForUndistortRectify(K_out, D, img_dim_out, np.eye(3), balance=balance)
print("Newly estimated K:\n", K_new)
map1, map2 = cv2.fisheye.initUndistortRectifyMap(K, D, np.eye(3), K_new, img_dim_out, cv2.CV_32FC1)
print("Rectify Map1 Dimension:\n", map1.shape)
print("Rectify Map2 Dimension:\n", map2.shape)
undistorted_image_gray = cv2.remap(image_gray, map1, map2, interpolation=cv2.INTER_LINEAR, borderMode=cv2.BORDER_CONSTANT)
fig = plt.figure()
plt.imshow(undistorted_image_gray, "gray")
ret, corners = cv2.findChessboardCorners(image_gray, (6,8),cv2.CALIB_CB_ADAPTIVE_THRESH+cv2.CALIB_CB_FAST_CHECK+cv2.CALIB_CB_NORMALIZE_IMAGE)
corners_subpix = cv2.cornerSubPix(image_gray, corners, (3,3), (-1,-1), (cv2.TERM_CRITERIA_EPS + cv2.TERM_CRITERIA_MAX_ITER, 30, 0.1))
undistorted_corners = cv2.fisheye.undistortPoints(corners_subpix, K, D)
undistorted_corners = undistorted_corners.reshape(-1,2)
fx = K_new[0,0]
fy = K_new[1,1]
cx = K_new[0,2]
cy = K_new[1,2]
undistorted_corners_pixel = np.zeros_like(undistorted_corners)
for i, (x, y) in enumerate(undistorted_corners):
px = x*fx + cx
py = y*fy + cy
undistorted_corners_pixel[i,0] = px
undistorted_corners_pixel[i,1] = py
undistorted_image_show = cv2.cvtColor(undistorted_image_gray, cv2.COLOR_GRAY2BGR)
for corner in undistorted_corners_pixel:
image_corners = cv2.circle(np.zeros_like(undistorted_image_show), (int(corner[0]),int(corner[1])), 15, [0, 255, 0], -1)
undistorted_image_show = cv2.add(undistorted_image_show, image_corners)
fig = plt.figure()
plt.imshow(undistorted_image_show, "gray")
关于python - 在 Python 的 OpenCV 中使用鱼眼相机捕获的点不失真的正确方法是什么?,我们在Stack Overflow上找到一个类似的问题: https://stackoverflow.com/questions/61147903/
这个问题已经有答案了: How to do case insensitive string comparison? (23 个回答) 已关闭 3 年前。 用户在我的输入栏中写入“足球”,然后执行第 6
啊,不习惯 javascript 中的字符串。 character_id= + id + correct= + correctOrIncorrect 这就是我需要制作成字符串的内容。如果您无法猜测字符
$(function() { var base_price = 0; CalculatePrice(); $(".math1").on('change', function(e) { Calc
我找不到任何文章回答问题:将Spinnaker部署到Spinnaker将管理的同一Kubernetes集群是否安全/正确?我主要是指生产,HA部署。 最佳答案 我认为Spinnaker和Kuberne
我正在使用MSVC在Windows上从源代码(官方源代码发布,而不是从仓库中)构建Qt5(Qt 5.15.0)。 我正在设置环境。变量,依赖项等,然后运行具有1600万个选项的configure,最后
我需要打印一个包含重复单词的数组。我的数组已经可以工作,但我不知道如何正确计算单词数。我已经知道,当我的索引计数器 (i) 为 49 时,并且当 (i) 想要计数到 50 时,我会收到错误,但我不知道
我正在遵循一个指南,该指南允许 Google map 屏幕根据屏幕尺寸禁用滚动。我唯一挣扎的部分是编写一个代码,当我手动调整屏幕大小时动态更改 True/False 值。 这是我按照说明操作的网站,但
我有一个类“FileButton”。它的目的是将文件链接到 JButton,FileButton 继承自 JButton。子类继承自此以使用链接到按钮的文件做有用的事情。 JingleCardButt
我的 friend 数组只返回一个数字而不是所有数字。 ($myfriends = 3) 应该是…… ($myfriends = 3 5 7 8 9 12). 如果我让它进入 while 循环……整个
这个问题在这里已经有了答案: Is there a workaround to make CSS classes with names that start with numbers valid?
我正在制作一个 JavaScript 函数,当调整窗口大小时,它会自动将 div 的大小调整为与窗口相同的宽度/高度。 该功能非常基本,但我注意到在调整窗口大小时出现明显的“绘制”滞后。在 JS fi
此问题的基本视觉效果可在 http://sevenx.de/demo/bootstrap-carousel/inc.carousel/tabbed-slider.html 获得。 - 如果你想看一看。
我明白,如果我想从函数返回一个字符串文字或一个数组,我应该将其声明为静态的,这样当被调用的函数被返回时,内容就不会“消亡”。 但我的问题是,当我在函数内部使用 malloc 分配内存时会怎样? 在下面
在 mySQL 数据库中存储 true/false/1/0 值最合适(读取数据消耗最少)的数据字段是什么? 我以前使用过一个字符长的 tinyint,但我不确定它是否是最佳解决方案? 谢谢! 最佳答案
我想一次读取并处理CSV文件第一行中的条目(例如打印)。我假设使用Unix风格的\n换行符,没有条目长度超过255个字符,并且(现在)在EOF之前有一个换行符。这意味着它是fgets()后跟strto
所以,我们都知道 -1 > 2u == true 的 C/C++ 有符号/无符号比较规则,并且我有一种情况,我想有效地实现“正确”比较。 我的问题是,考虑到人们熟悉的尽可能多的架构,哪种方法更有效。显
**摘要:**文章的标题看似自相矛盾。 本文分享自华为云社区《Java异常处理:如何写出“正确”但被编译器认为有语法错误的程序》,作者: Jerry Wang 。 文章的标题看似自相矛盾,然而我在“正
我有一个数据框,看起来像: dataDemo % mutate_each(funs(ifelse(. == '.', REF, as.character(.))), -POS) # POS REF
有人可以帮助我使用 VBScript 重新格式化/正确格式化带分隔符的文本文件吗? 我有一个文本文件 ^分界如下: AGREE^NAME^ADD1^ADD2^ADD3^ADD4^PCODE^BAL^A
就目前而言,这个问题不适合我们的问答形式。我们希望答案得到事实、引用或专业知识的支持,但这个问题可能会引起辩论、争论、投票或扩展讨论。如果您觉得这个问题可以改进并可能重新打开,visit the he
我是一名优秀的程序员,十分优秀!