gpt4 book ai didi

r - 在R中以长格式(相对于基组)按组计算跨行的增长率

转载 作者:行者123 更新时间:2023-12-02 15:52:19 24 4
gpt4 key购买 nike

我想在长格式的数据集中按组(这里的组是“国家”和“年”)计算跨行的增长率。由于增长率应该与“基线”情景下的相同值(即相同的“国家”和相同的“年份”)相关(而不是相对于上一行),我通过将数据格式更改为宽格式如下:

df <- spread(df, scenario, value) %>% 
mutate(NDC_growth=((NDC/Baseline)-1)*100,
`Partial BCA_growth`=((`Partial BCA`/Baseline)-1)*100,
BCA_growth=((BCA/Baseline)-1)*100,
`Full BCA_growth`=((`Full BCA`/Baseline)-1)*100 )

有没有办法在长格式中做到这一点?

数据如下:

    df<- structure(list(country = c("CAN", "CAN", "CAN", "CAN", "CAN", 
"CAN", "CAN", "CAN", "CAN", "CAN", "CAN", "CAN", "CAN", "CAN",
"CAN", "NCOA", "NCOA", "NCOA", "NCOA", "NCOA"), year = c("2020",
"2020", "2020", "2020", "2020", "2025", "2025", "2025", "2025",
"2025", "2030", "2030", "2030", "2030", "2030", "2020", "2020",
"2020", "2020", "2020"), scenario = c("Baseline", "BCA", "Full BCA",
"NDC", "Partial BCA", "Baseline", "BCA", "Full BCA", "NDC", "Partial BCA",
"Baseline", "BCA", "Full BCA", "NDC", "Partial BCA", "Baseline",
"BCA", "Full BCA", "NDC", "Partial BCA"), value = c(50527.8708215592,
50487.4619290311, 50485.0924261504, 50489.4453487844, 50486.1975947164,
55845.9708589775, 55070.2745559464, 55133.107605613, 55153.4525662034,
55065.0036253937, 61463.2383809614, 59893.8712077455, 59971.8726308887,
59936.72156767, 59875.7762254252, 338418.917408225, 338420.617142445,
338428.007621131, 338419.514027857, 338427.263672463)), row.names = c(NA,
-20L), class = c("tbl_df", "tbl", "data.frame"))

最佳答案

要根据每个组中的第一个进行计算,请使用 first。如果 Baseline 始终是每个组中的第一个,则这是有效的。

df<- structure(list(
country = c("CAN", "CAN", "CAN", "CAN", "CAN",
"CAN", "CAN", "CAN", "CAN", "CAN", "CAN", "CAN", "CAN", "CAN",
"CAN", "NCOA", "NCOA", "NCOA", "NCOA", "NCOA"),
year = c("2020", "2020", "2020", "2020", "2020", "2025", "2025",
"2025", "2025", "2025", "2030", "2030", "2030", "2030", "2030",
"2020", "2020", "2020", "2020", "2020"),
scenario = c("Baseline", "BCA", "Full BCA", "NDC", "Partial BCA",
"Baseline", "BCA", "Full BCA", "NDC", "Partial BCA",
"Baseline", "BCA", "Full BCA", "NDC", "Partial BCA", "Baseline",
"BCA", "Full BCA", "NDC", "Partial BCA"),
value = c(50527.8708215592, 50487.4619290311, 50485.0924261504,
50489.4453487844, 50486.1975947164, 55845.9708589775, 55070.2745559464,
55133.107605613, 55153.4525662034, 55065.0036253937, 61463.2383809614,
59893.8712077455, 59971.8726308887, 59936.72156767, 59875.7762254252,
338418.917408225, 338420.617142445, 338428.007621131, 338419.514027857,
338427.263672463)), row.names = c(NA, -20L),
class = c("tbl_df", "tbl", "data.frame"))

suppressPackageStartupMessages(library(dplyr))

df %>%
group_by(country, year) %>%
mutate(growth = (value/first(value) - 1)*100)
#> # A tibble: 20 × 5
#> # Groups: country, year [4]
#> country year scenario value growth
#> <chr> <chr> <chr> <dbl> <dbl>
#> 1 CAN 2020 Baseline 50528. 0
#> 2 CAN 2020 BCA 50487. -0.0800
#> 3 CAN 2020 Full BCA 50485. -0.0847
#> 4 CAN 2020 NDC 50489. -0.0760
#> 5 CAN 2020 Partial BCA 50486. -0.0825
#> 6 CAN 2025 Baseline 55846. 0
#> 7 CAN 2025 BCA 55070. -1.39
#> 8 CAN 2025 Full BCA 55133. -1.28
#> 9 CAN 2025 NDC 55153. -1.24
#> 10 CAN 2025 Partial BCA 55065. -1.40
#> 11 CAN 2030 Baseline 61463. 0
#> 12 CAN 2030 BCA 59894. -2.55
#> 13 CAN 2030 Full BCA 59972. -2.43
#> 14 CAN 2030 NDC 59937. -2.48
#> 15 CAN 2030 Partial BCA 59876. -2.58
#> 16 NCOA 2020 Baseline 338419. 0
#> 17 NCOA 2020 BCA 338421. 0.000502
#> 18 NCOA 2020 Full BCA 338428. 0.00269
#> 19 NCOA 2020 NDC 338420. 0.000176
#> 20 NCOA 2020 Partial BCA 338427. 0.00247

reprex package 创建于 2022-05-08 (v2.0.1)

关于r - 在R中以长格式(相对于基组)按组计算跨行的增长率,我们在Stack Overflow上找到一个类似的问题: https://stackoverflow.com/questions/72164498/

24 4 0
Copyright 2021 - 2024 cfsdn All Rights Reserved 蜀ICP备2022000587号
广告合作:1813099741@qq.com 6ren.com