- html - 出于某种原因,IE8 对我的 Sass 文件中继承的 html5 CSS 不友好?
- JMeter 在响应断言中使用 span 标签的问题
- html - 在 :hover and :active? 上具有不同效果的 CSS 动画
- html - 相对于居中的 html 内容固定的 CSS 重复背景?
我正在尝试为 double 组实现经典的点积内核,并对各个 block 的最终总和进行原子计算。正如编程指南第 116 页所述,我使用atomicAdd 来实现 double 。可能我做错了什么。每个 block 中线程的部分总和计算正确,但事后原子操作似乎无法正常工作因为每次我使用相同的数据运行内核时,我都会收到不同的结果。如果有人能发现错误或提供替代解决方案,我将不胜感激!这是我的内核:
__global__ void cuda_dot_kernel(int *n,double *a, double *b, double *dot_res)
{
__shared__ double cache[threadsPerBlock]; //thread shared memory
int global_tid=threadIdx.x + blockIdx.x * blockDim.x;
int i=0,cacheIndex=0;
double temp = 0;
cacheIndex = threadIdx.x;
while (global_tid < (*n)) {
temp += a[global_tid] * b[global_tid];
global_tid += blockDim.x * gridDim.x;
}
cache[cacheIndex] = temp;
__syncthreads();
for (i=blockDim.x/2; i>0; i>>=1) {
if (threadIdx.x < i) {
cache[threadIdx.x] += cache[threadIdx.x + i];
}
__syncthreads();
}
__syncthreads();
if (cacheIndex==0) {
*dot_res=cuda_atomicAdd(dot_res,cache[0]);
}
}
这是我的设备函数atomicAdd:
__device__ double cuda_atomicAdd(double *address, double val)
{
double assumed,old=*address;
do {
assumed=old;
old= __longlong_as_double(atomicCAS((unsigned long long int*)address,
__double_as_longlong(assumed),
__double_as_longlong(val+assumed)));
}while (assumed!=old);
return old;
}
最佳答案
使用临时 CUDA 代码进行正确的缩减可能很棘手,因此这里有一个使用 Thrust 算法的替代解决方案,该算法包含在 CUDA 工具包中:
#include <thrust/inner_product.h>
#include <thrust/device_ptr.h>
double do_dot_product(int n, double *a, double *b)
{
// wrap raw pointers to device memory with device_ptr
thrust::device_ptr<double> d_a(a), d_b(b);
// inner_product implements a mathematical dot product
return thrust::inner_product(d_a, d_a + n, d_b, 0.0);
}
关于CUDA 点积,我们在Stack Overflow上找到一个类似的问题: https://stackoverflow.com/questions/9449541/
我正在尝试构建不同(但每个同质)类型的可遍历项的多个交叉产品。所需的返回类型是元组的可遍历对象,其类型与输入可遍历对象中的类型相匹配。例如: List(1, 2, 3) cross Seq("a",
import java.util.Scanner; public class BooleanProduct { public static void main(String[] args) {
任务 - 数字的最大 K 积 时间限制:1 内存限制:64 M 给定一个整数序列 N(1 ≤ N ≤ 10 月,| A i | ≤ 2.10 9)和数量 K(1 ≤ K ≤ N)。找出乘积最大的 K
考虑一个大小为 48x16 的 float 矩阵 A 和一个大小为 1x48 的 float vector b。 请建议一种在常见桌面处理器 (i5/i7) 上尽可能快地计算 b×A 的方法。 背景。
假设我有一个 class Rectangle(object): def __init__(self, len
设 A 为 3x3 阶矩阵。判断矩阵A的 boolean 积可以组成多少个不同的矩阵。 这是我想出的: #include int main() { int matri
背景 生成随机权重列表后: sizes = [784,30,10] weights = [np.random.randn(y, x) for x, y in zip(sizes[:-1],sizes[
我正在开发一个 python 项目并使用 numpy。我经常需要通过单位矩阵计算矩阵的克罗内克积。这些是我代码中的一个相当大的瓶颈,所以我想优化它们。我必须服用两种产品。第一个是: np.kron(n
有人可以提供一个例子说明如何使用 uBLAS 产品来乘法吗?或者,如果有更好的 C++ 矩阵库,您可以推荐我也欢迎。这正在变成一个令人头疼的问题。 这是我的代码: vector myVec(scala
我正在尝试开发一个Javascript程序,它会提示用户输入两个整数,然后显示这两个整数的和、乘积、差和商。现在它只显示总和。我实际上不知道乘法、减法和除法命令是否正在执行。这是 jsfiddle 的
如何使用 la4j 计算 vector (叉)积? vector 乘积为 接受两个 vector 并返回 vector 。 但是他们有scalar product , product of all e
在 C++ 中使用 Lapack 让我有点头疼。我发现为 fortran 定义的函数有点古怪,所以我尝试在 C++ 上创建一些函数,以便我更容易阅读正在发生的事情。 无论如何,我没有让矩阵 vecto
是否可以使用 Apple 的 Metal Performance Shaders 执行 Hadamard 产品?我看到可以使用 this 执行普通矩阵乘法,但我特别在寻找逐元素乘法,或者一种构造乘法的
我正在尝试使用 open mp 加速稀疏矩阵 vector 乘积,代码如下: void zAx(double * z, double * data, long * colind, long * row
有没有一种方法可以使用 cv::Mat OpenCV 中的数据结构? 我检查过 the documentation并且没有内置功能。但是我在尝试将标准矩阵乘法表达式 (*) 与 cv::Mat 类型的
我是一名优秀的程序员,十分优秀!