gpt4 book ai didi

Julia JuMP 多元 ML 估计

转载 作者:行者123 更新时间:2023-12-02 15:28:28 25 4
gpt4 key购买 nike

我正在尝试使用 JuMP 和 NLopt 求解器在 Julia 的线性回归设置中执行正态分布变量的 ML 估计。

有一个很好的工作示例 here但是,如果我尝试估计回归参数(斜率),则代码编写起来会变得相当乏味,特别是在参数空间增加的情况下。

也许有人知道如何写得更简洁。这是我的代码:

#type definition to store data
type data
n::Int
A::Matrix
β::Vector
y::Vector
ls::Vector
err::Vector
end

#generate regression data
function Data( n = 1000 )
A = [ones(n) rand(n, 2)]
β = [2.1, 12.9, 3.7]
y = A*β + rand(Normal(), n)
ls = inv(A'A)A'y
err = y - A * ls
data(n, A, β, y, ls, err)
end

#initialize data
d = Data()
println( var(d.y) )

function ml( )
m = Model( solver = NLoptSolver( algorithm = :LD_LBFGS ) )
@defVar( m, b[1:3] )
@defVar( m, σ >= 0, start = 1.0 )

#this is the working example.
#As you can see it's quite tedious to write
#and becomes rather infeasible if there are more then,
#let's say 10, slope parameters to estimate
@setNLObjective( m, Max,-(d.n/2)*log(2π*σ^2) \\cont. next line
-sum{(d.y[i]-d.A[i,1]*b[1] \\
-d.A[i,2]*b[2] \\
-d.A[i,3]*b[3])^2, i=1:d.n}/(2σ^2) )

#julia returns:
> slope: [2.14,12.85,3.65], variance: 1.04

#which is what is to be expected
#however:

#this is what I would like the code to look like:
@setNLObjective( m, Max,-(d.n/2)*log(2π*σ^2) \\
-sum{(d.y[i]-(d.A[i,j]*b[j]))^2, \\
i=1:d.n, j=1:3}/(2σ^2) )

#I also tried:
@setNLObjective( m, Max,-(d.n/2)*log(2π*σ^2) \\
-sum{sum{(d.y[i]-(d.A[i,j]*b[j]))^2, \\
i=1:d.n}, j=1:3}/(2σ^2) )

#but unfortunately it returns:
> slope: [10.21,18.89,15.88], variance: 54.78

solve(m)
println( getValue(b), " ", getValue(σ^2) )
end
ml()

有什么想法吗?

编辑

正如 Reza 所指出的,一个有效的示例是:

@setNLObjective( m, Max,-(d.n/2)*log(2π*σ^2) \\
-sum{(d.y[i]-sum{d.A[i,j]*b[j],j=1:3})^2,
i=1:d.n}/(2σ^2) )

最佳答案

sum{} 语法是一种特殊语法,仅适用于 JuMP 宏内部,并且是求和的首选语法。

所以你的例子应该写成:

function ml(  )
m = Model( solver = NLoptSolver( algorithm = :LD_LBFGS ) )
@variable( m, b[1:3] )
@variable( m, σ >= 0, start = 1.0 )

@NLobjective(m, Max,
-(d.n/2)*log(2π*σ^2)
- sum{
sum{(d.y[i]-d.A[i,j]*b[j], j=1:3}^2,
i=1:d.n}/(2σ^2) )

我将其扩展到多行以尽可能清晰。

Reza 的答案在技术上并没有错误,但不是惯用的 JuMP,并且对于较大的模型来说效率不高。

关于Julia JuMP 多元 ML 估计,我们在Stack Overflow上找到一个类似的问题: https://stackoverflow.com/questions/33185094/

25 4 0
Copyright 2021 - 2024 cfsdn All Rights Reserved 蜀ICP备2022000587号
广告合作:1813099741@qq.com 6ren.com