gpt4 book ai didi

python - Tensorboard 获取空白页

转载 作者:行者123 更新时间:2023-12-02 15:12:01 25 4
gpt4 key购买 nike

我是 tensorflow 的新手,我关注这个 tutorial了解此框架。

现在我正在尝试使用 Tensorboard 可视化我的图表,但我得到的是张量板空白页,没有任何结果。

我用来可视化图表的代码是:

from __future__ import print_function
import tensorflow as tf
import numpy as np


def add_layer(inputs, in_size, out_size, n_layer, activation_function=None):
# add one more layer and return the output of this layer
layer_name = 'layer%s' % n_layer
with tf.name_scope(layer_name):
with tf.name_scope('weights'):
Weights = tf.Variable(tf.random_normal([in_size, out_size]), name='W')
tf.summary.histogram(layer_name + '/weights', Weights)
with tf.name_scope('biases'):
biases = tf.Variable(tf.zeros([1, out_size]) + 0.1, name='b')
tf.summary.histogram(layer_name + '/biases', biases)
with tf.name_scope('Wx_plus_b'):
Wx_plus_b = tf.add(tf.matmul(inputs, Weights), biases)
if activation_function is None:
outputs = Wx_plus_b
else:
outputs = activation_function(Wx_plus_b, )
tf.summary.histogram(layer_name + '/outputs', outputs)
return outputs


# Make up some real data
x_data = np.linspace(-1, 1, 300)[:, np.newaxis]
noise = np.random.normal(0, 0.05, x_data.shape)
y_data = np.square(x_data) - 0.5 + noise

# define placeholder for inputs to network
with tf.name_scope('inputs'):
xs = tf.placeholder(tf.float32, [None, 1], name='x_input')
ys = tf.placeholder(tf.float32, [None, 1], name='y_input')

# add hidden layer
l1 = add_layer(xs, 1, 10, n_layer=1, activation_function=tf.nn.relu)
# add output layer
prediction = add_layer(l1, 10, 1, n_layer=2, activation_function=None)

# the error between prediciton and real data
with tf.name_scope('loss'):
loss = tf.reduce_mean(tf.reduce_sum(tf.square(ys - prediction),
reduction_indices=[1]))
tf.summary.scalar('loss', loss)

with tf.name_scope('train'):
train_step = tf.train.GradientDescentOptimizer(0.1).minimize(loss)

sess = tf.Session()
merged = tf.summary.merge_all()

writer = tf.summary.FileWriter("logs/", sess.graph)

init = tf.global_variables_initializer()
sess.run(init)

for i in range(1000):
sess.run(train_step, feed_dict={xs: x_data, ys: y_data})
if i % 50 == 0:
result = sess.run(merged,
feed_dict={xs: x_data, ys: y_data})
writer.add_summary(result, i)

我正在使用 Ubuntu 16.04python 2.7,我的 tensorflow 版本是 1.0.1

当我运行程序时会创建一个新的日志文件,然后我使用 theis 命令可视化张量板:

 tensorboard --logdir=/logs

然后如果我去 http://127.0.1.1:6006/ 获取没有任何摘要的 Tensorboard 页面,为什么?

我也尝试使用其他浏览器,但不起作用。

最佳答案

您指向 tensorboard 的日志目录可能不存在(在这种情况下,tensorboard 不会抛出错误)。您是说 tensorboard --logdir=./logs/ 吗?

关于python - Tensorboard 获取空白页,我们在Stack Overflow上找到一个类似的问题: https://stackoverflow.com/questions/43279667/

25 4 0
Copyright 2021 - 2024 cfsdn All Rights Reserved 蜀ICP备2022000587号
广告合作:1813099741@qq.com 6ren.com