- html - 出于某种原因,IE8 对我的 Sass 文件中继承的 html5 CSS 不友好?
- JMeter 在响应断言中使用 span 标签的问题
- html - 在 :hover and :active? 上具有不同效果的 CSS 动画
- html - 相对于居中的 html 内容固定的 CSS 重复背景?
我正在尝试使用 Python 的 Keras 库中的 LSTM 训练 Seq2Seq 模型。我想使用句子的 TF IDF 向量表示作为模型的输入并出现错误。
X = ["Good morning", "Sweet Dreams", "Stay Awake"]
Y = ["Good morning", "Sweet Dreams", "Stay Awake"]
vectorizer = TfidfVectorizer()
vectorizer.fit(X)
vectorizer.transform(X)
vectorizer.transform(Y)
tfidf_vector_X = vectorizer.transform(X).toarray() #shape - (3,6)
tfidf_vector_Y = vectorizer.transform(Y).toarray() #shape - (3,6)
tfidf_vector_X = tfidf_vector_X[:, :, None] #shape - (3,6,1) since LSTM cells expects ndims = 3
tfidf_vector_Y = tfidf_vector_Y[:, :, None] #shape - (3,6,1)
X_train, X_test, y_train, y_test = train_test_split(tfidf_vector_X, tfidf_vector_Y, test_size = 0.2, random_state = 1)
model = Sequential()
model.add(LSTM(output_dim = 6, input_shape = X_train.shape[1:], return_sequences = True, init = 'glorot_normal', inner_init = 'glorot_normal', activation = 'sigmoid'))
model.add(LSTM(output_dim = 6, input_shape = X_train.shape[1:], return_sequences = True, init = 'glorot_normal', inner_init = 'glorot_normal', activation = 'sigmoid'))
model.add(LSTM(output_dim = 6, input_shape = X_train.shape[1:], return_sequences = True, init = 'glorot_normal', inner_init = 'glorot_normal', activation = 'sigmoid'))
model.add(LSTM(output_dim = 6, input_shape = X_train.shape[1:], return_sequences = True, init = 'glorot_normal', inner_init = 'glorot_normal', activation = 'sigmoid'))
adam = optimizers.Adam(lr = 0.001, beta_1 = 0.9, beta_2 = 0.999, epsilon = None, decay = 0.0, amsgrad = False)
model.compile(loss = 'cosine_proximity', optimizer = adam, metrics = ['accuracy'])
model.fit(X_train, y_train, nb_epoch = 100)
上面的代码抛出:
Error when checking target: expected lstm_4 to have shape (6, 6) but got array with shape (6, 1)
有人能告诉我哪里出了问题以及如何解决吗?
最佳答案
目前,您正在最后一层中返回维度 6 的序列。您可能希望返回维度为 1 的序列以匹配您的目标序列。我在这里不是 100% 确定,因为我没有使用 seq2seq 模型的经验,但至少代码以这种方式运行。也许看看 Keras blog 上的 seq2seq 教程.
除此之外,还有两个小点:使用 Sequential API 时,您只需要为模型的第一层指定一个 input_shape
。此外,LSTM
层的 output_dim
参数已弃用,应替换为 units
参数:
from sklearn.feature_extraction.text import TfidfVectorizer
from sklearn.model_selection import train_test_split
X = ["Good morning", "Sweet Dreams", "Stay Awake"]
Y = ["Good morning", "Sweet Dreams", "Stay Awake"]
vectorizer = TfidfVectorizer().fit(X)
tfidf_vector_X = vectorizer.transform(X).toarray() #//shape - (3,6)
tfidf_vector_Y = vectorizer.transform(Y).toarray() #//shape - (3,6)
tfidf_vector_X = tfidf_vector_X[:, :, None] #//shape - (3,6,1)
tfidf_vector_Y = tfidf_vector_Y[:, :, None] #//shape - (3,6,1)
X_train, X_test, y_train, y_test = train_test_split(tfidf_vector_X, tfidf_vector_Y, test_size = 0.2, random_state = 1)
from keras import Sequential
from keras.layers import LSTM
model = Sequential()
model.add(LSTM(units=6, input_shape = X_train.shape[1:], return_sequences = True))
model.add(LSTM(units=6, return_sequences=True))
model.add(LSTM(units=6, return_sequences=True))
model.add(LSTM(units=1, return_sequences=True, name='output'))
model.compile(loss='cosine_proximity', optimizer='sgd', metrics = ['accuracy'])
print(model.summary())
model.fit(X_train, y_train, epochs=1, verbose=1)
关于python - 如何在 Keras Python 中将 TF IDF 向量化器与 LSTM 一起使用,我们在Stack Overflow上找到一个类似的问题: https://stackoverflow.com/questions/52182185/
我无法准确理解 LSTM 单元的范围——它如何映射到网络层。来自格雷夫斯 (2014): 在我看来,在单层网络中,layer = lstm 单元。这实际上如何在多层 rnn 中工作? 三层RNN LS
这是代码 model = Sequential() model.add(LSTM(256, input_shape=(None, 1), return_sequences=True)) model.a
为什么我们需要在pytorch中初始化LSTM中的隐藏状态h0。由于 h0 无论如何都会被计算并被覆盖?是不是很像 整合一个一 = 0 一个= 4 即使我们不做a=0,也应该没问题.. 最佳答案 重点
我正在尝试使用 LSTM 在 Deeplearning4j 中进行一些简单的时间序列预测,但我很难让它工作。 我有一个简单的文本文件,其中包含如下所示的数字列表,并希望网络学习预测下一个数字。 有没有
在大量阅读和绘制图表之后,我想我已经提出了一个模型,我可以将其用作更多测试我需要调整哪些参数和功能的基础。但是,我对如何实现以下测试用例感到困惑(所有数字都比最终模型小几个数量级,但我想从小处着手):
我正在尝试实现“Livelinet:用于预测教育视频中的活力的多模式深度循环神经网络”中的结构。 为了简单说明,我将 10 秒音频剪辑分成 10 个 1 秒音频剪辑,并从该 1 秒音频剪辑中获取频谱图
我正在 Tensorflow 中制作 LSTM 神经网络。 输入张量大小为 92。 import tensorflow as tf from tensorflow.contrib import rnn
我正在尝试 keras IMDB 数据的示例,数据形状是这样的: x_train shape: (25000, 80) 我只是把keras例子的原始代码改成了这样的代码: model = Sequen
我需要了解如何使用 torch.nn 的不同组件正确准备批量训练的输入。模块。具体来说,我希望为 seq2seq 模型创建一个编码器-解码器网络。 假设我有一个包含这三层的模块,按顺序: nn.Emb
我很难概念化 Keras 中有状态 LSTM 和无状态 LSTM 之间的区别。我的理解是,在每个批处理结束时,在无状态情况下“网络状态被重置”,而对于有状态情况,网络状态会为每个批处理保留,然后必须在
nn.Embedding() 是学习 LSTM 所必需的吗? 我在 PyTorch 中使用 LSTM 来预测 NER - 此处是类似任务的示例 - https://pytorch.org/tutori
我正在尝试找出适合我想要拟合的模型的正确语法。这是一个时间序列预测问题,我想在将时间序列输入 LSTM 之前使用一些密集层来改进时间序列的表示。 这是我正在使用的虚拟系列: import pandas
我在理解堆叠式 LSTM 网络中各层的输入-输出流时遇到了一些困难。假设我已经创建了一个如下所示的堆叠式 LSTM 网络: # parameters time_steps = 10 features
LSTM 类中的默认非线性激活函数是 tanh。我希望在我的项目中使用 ReLU。浏览文档和其他资源,我无法找到一种简单的方法来做到这一点。我能找到的唯一方法是定义我自己的自定义 LSTMCell,但
在 PyTorch 中,有一个 LSTM 模块,除了输入序列、隐藏状态和单元状态之外,它还接受 num_layers 参数,该参数指定我们的 LSTM 有多少层。 然而,还有另一个模块 LSTMCel
没什么好说的作为介绍:我想在 TensorFlow 中将 LSTM 堆叠在另一个 LSTM 上,但一直被错误阻止,我不太明白,更不用说单独解决了。 代码如下: def RNN(_X, _istate,
有人可以解释一下吗?我知道双向 LSTM 具有前向和反向传递,但是与单向 LSTM 相比,它有什么优势? 它们各自更适合什么? 最佳答案 LSTM 的核心是使用隐藏状态保留已经通过它的输入信息。 单向
我想构建一个带有特殊词嵌入的 LSTM,但我对它的工作原理有一些疑问。 您可能知道,一些 LSTM 对字符进行操作,因此它是字符输入,字符输出。我想做同样的事情,通过对单词的抽象来学习使用嵌套的 LS
我编写了一个LSTM回归模型。它是最后一个LSTM层的BATCH_SIZE=1和RETURN_Sequence=True的模型。我还设置了VERIFICATION_DATA和耐心进行培训。但似乎存在一
给定一个训练有素的 LSTM 模型,我想对单个时间步执行推理,即以下示例中的 seq_length = 1。在每个时间步之后,需要为下一个“批处理”记住内部 LSTM(内存和隐藏)状态。在推理的最开始
我是一名优秀的程序员,十分优秀!