gpt4 book ai didi

r - 如何从 ISI Web of Knowledge 检索有关期刊的信息?

转载 作者:行者123 更新时间:2023-12-02 14:36:45 25 4
gpt4 key购买 nike

我正在从事一些预测文章引用计数的工作。我遇到的问题是我需要 ISI Web of Knowledge 中有关期刊的信息。他们逐年收集这些信息(期刊影响因子、特征因子……),但无法一次下载所有一年期期刊信息。只有“标记全部”选项,该选项始终标记列表中的前 500 种期刊(然后可以下载该列表)。我正在用 R 编写这个项目。所以我的问题是,如何立即或以高效、整洁的方式检索这些信息?谢谢你的任何想法。

最佳答案

我用了RSelenium抓取 WOS 以获取引文数据并绘制类似于 Kieran Healy 的图。 (但我的是考古学期刊,所以我的代码是为此量身定制的):

enter image description here

这是我的代码(来自 github 上的一个稍大的项目):

# setup broswer and selenium
library(devtools)
install_github("ropensci/rselenium")
library(RSelenium)
checkForServer()
startServer()
remDr <- remoteDriver()
remDr$open()
# go to http://apps.webofknowledge.com/
# refine search by journal... perhaps arch?eolog* in 'topic'
# then: 'Research Areas' -> archaeology -> refine
# then: 'Document types' -> article -> refine
# then: 'Source title' -> choose your favourite journals -> refine
# must have <10k results to enable citation data
# click 'create citation report' tab at the top
# do the first page manually to set the 'save file' and 'do this automatically',
# then let loop do the work after that

# before running the loop, get URL of first page that we already saved,
# and paste in next line, the URL will be different for each run
remDr$navigate("http://apps.webofknowledge.com/CitationReport.do?product=UA&search_mode=CitationReport&SID=4CvyYFKm3SC44hNsA2w&page=1&cr_pqid=7&viewType=summary")

这是自动从接下来的数百页 WOS 结果收集数据的循环...

# Loop to get citation data for each page of results, each iteration will save a txt file, I used selectorgadget to check the css ids, they might be different for you.
for(i in 1:1000){
# click on 'save to text file'
result <- try(
webElem <- remDr$findElement(using = 'id', value = "select2-chosen-1")
); if(class(result) == "try-error") next;
webElem$clickElement()
# click on 'send' on pop-up window
result <- try(
webElem <- remDr$findElement(using = "css", "span.quickoutput-action")
); if(class(result) == "try-error") next;
webElem$clickElement()
# refresh the page to get rid of the pop-up
remDr$refresh()
# advance to the next page of results
result <- try(
webElem <- remDr$findElement(using = 'xpath', value = "(//form[@id='summary_navigation']/table/tbody/tr/td[3]/a/i)[2]")
); if(class(result) == "try-error") next;
webElem$clickElement()
print(i)
}

# there are many duplicates, but the code below will remove them
# copy the folder to your hard drive, and edit the setwd line below
# to match the location of your folder containing the hundreds of text files.

将所有文本文件读入 R...

# move them manually into a folder of their own
setwd("/home/two/Downloads/WoS")
# get text file names
my_files <- list.files(pattern = ".txt")
# make list object to store all text files in R
my_list <- vector(mode = "list", length = length(my_files))
# loop over file names and read each file into the list
my_list <- lapply(seq(my_files), function(i) read.csv(my_files[i],
skip = 4,
header = TRUE,
comment.char = " "))
# check to see it worked
my_list[1:5]

将抓取的数据帧列表合并到一个大数据帧中

# use data.table for speed
install_github("rdatatable/data.table")
library(data.table)
my_df <- rbindlist(my_list)
setkey(my_df)
# filter only a few columns to simplify
my_cols <- c('Title', 'Publication.Year', 'Total.Citations', 'Source.Title')
my_df <- my_df[,my_cols, with=FALSE]
# remove duplicates
my_df <- unique(my_df)
# what journals do we have?
unique(my_df$Source.Title)

为期刊名称制作缩写,将文章标题全部大写以准备绘图......

# get names
long_titles <- as.character(unique(my_df$Source.Title))
# get abbreviations automatically, perhaps not the obvious ones, but it's fast
short_titles <- unname(sapply(long_titles, function(i){
theletters = strsplit(i,'')[[1]]
wh = c(1,which(theletters == ' ') + 1)
theletters[wh]
paste(theletters[wh],collapse='')
}))
# manually disambiguate the journals that now only have 'A' as the short name
short_titles[short_titles == "A"] <- c("AMTRY", "ANTQ", "ARCH")
# remove 'NA' so it's not confused with an actual journal
short_titles[short_titles == "NA"] <- ""
# add abbreviations to big table
journals <- data.table(Source.Title = long_titles,
short_title = short_titles)
setkey(journals) # need a key to merge
my_df <- merge(my_df, journals, by = 'Source.Title')
# make article titles all upper case, easier to read
my_df$Title <- toupper(my_df$Title)


## create new column that is 'decade'
# first make a lookup table to get a decade for each individual year
year1 <- 1900:2050
my_seq <- seq(year1[1], year1[length(year1)], by = 10)
indx <- findInterval(year1, my_seq)
ind <- seq(1, length(my_seq), by = 1)
labl1 <- paste(my_seq[ind], my_seq[ind + 1], sep = "-")[-42]
dat1 <- data.table(data.frame(Publication.Year = year1,
decade = labl1[indx],
stringsAsFactors = FALSE))
setkey(dat1, 'Publication.Year')
# merge the decade column onto my_df
my_df <- merge(my_df, dat1, by = 'Publication.Year')

查找出版十年内被引用次数最多的论文...

df_top <- my_df[ave(-my_df$Total.Citations, my_df$decade, FUN = rank) <= 10, ] 

# inspecting this df_top table is quite interesting.

以与 Kieran 类似的风格绘制绘图,此代码来自 Jonathan Goodwin他还复制了他的领域的情节( 12 )

######## plotting code from from Jonathan Goodwin ##########
######## http://jgoodwin.net/ ########

# format of data: Title, Total.Citations, decade, Source.Title
# THE WRITERS AUDIENCE IS ALWAYS A FICTION,205,1974-1979,PMLA

library(ggplot2)
ws <- df_top

ws <- ws[order(ws$decade,-ws$Total.Citations),]
ws$Title <- factor(ws$Title, levels = unique(ws$Title)) #to preserve order in plot, maybe there's another way to do this

g <- ggplot(ws, aes(x = Total.Citations,
y = Title,
label = short_title,
group = decade,
colour = short_title))

g <- g + geom_text(size = 4) +
facet_grid (decade ~.,
drop=TRUE,
scales="free_y") +
theme_bw(base_family="Helvetica") +
theme(axis.text.y=element_text(size=8)) +
xlab("Number of Web of Science Citations") + ylab("") +
labs(title="Archaeology's Ten Most-Cited Articles Per Decade (1970-)", size=7) +
scale_colour_discrete(name="Journals")

g #adjust sizing, etc.

该图的另一个版本,但没有代码:http://charlesbreton.ca/?page_id=179

关于r - 如何从 ISI Web of Knowledge 检索有关期刊的信息?,我们在Stack Overflow上找到一个类似的问题: https://stackoverflow.com/questions/27754051/

25 4 0
Copyright 2021 - 2024 cfsdn All Rights Reserved 蜀ICP备2022000587号
广告合作:1813099741@qq.com 6ren.com