- html - 出于某种原因,IE8 对我的 Sass 文件中继承的 html5 CSS 不友好?
- JMeter 在响应断言中使用 span 标签的问题
- html - 在 :hover and :active? 上具有不同效果的 CSS 动画
- html - 相对于居中的 html 内容固定的 CSS 重复背景?
不久前,我编写了一个函数来填充时间序列矩阵,该矩阵的 NA 值根据所需的规范而增加,并且它偶尔会在一些大约 50000 行、350 列的矩阵上使用。矩阵可以包含数字或字符值。主要问题是修复矩阵很慢,我想我应该向一些专家咨询如何更快地完成此任务。
我想 rcpp 或并行它可能会有所帮助,但我认为这可能是我的设计而不是 R 本身效率低下。我通常对 R 中的所有内容进行 vecotrize,但由于缺失值不遵循任何模式,因此除了按行处理矩阵之外,我没有找到其他方法。
需要调用该函数,以便它可以继承缺失值,也可以调用该函数以快速用最后一个已知值填充最新值。
这是一个示例矩阵:
testMatrix <- structure(c(NA, NA, NA, 29.98, 66.89, NA, -12.78, -11.65, NA,
4.03, NA, NA, NA, 29.98, 66.89, NA, -12.78, -11.65, NA, NA, NA,
NA, NA, 29.98, 66.89, NA, -12.78, NA, NA, 4.76, NA, NA, NA, NA,
66.89, NA, -12.78, NA, NA, 4.76, NA, NA, NA, 29.98, 66.89, NA,
-12.78, NA, NA, 4.76, NA, NA, NA, 29.98, 66.89, NA, -12.78, NA,
NA, 4.39, NA, NA, NA, 29.98, 66.89, NA, -10.72, -11.65, NA, 4.39,
NA, NA, NA, 29.98, 50.65, NA, -10.72, -11.65, NA, 4.39, NA, NA,
4.72, NA, 50.65, NA, -10.72, -38.61, 45.3, NA), .Dim = c(10L,
9L), .Dimnames = list(c("ID_a", "ID_b", "ID_c", "ID_d", "ID_e",
"ID_f", "ID_g", "ID_h", "ID_i", "ID_j"), c("2010-09-30", "2010-10-31",
"2010-11-30", "2010-12-31", "2011-01-31", "2011-02-28", "2011-03-31",
"2011-04-30", "2011-05-31")))
print(testMatrix)
2010-09-30 2010-10-31 2010-11-30 2010-12-31 2011-01-31 2011-02-28 2011-03-31 2011-04-30 2011-05-31
ID_a NA NA NA NA NA NA NA NA NA
ID_b NA NA NA NA NA NA NA NA NA
ID_c NA NA NA NA NA NA NA NA 4.72
ID_d 29.98 29.98 29.98 NA 29.98 29.98 29.98 29.98 NA
ID_e 66.89 66.89 66.89 66.89 66.89 66.89 66.89 50.65 50.65
ID_f NA NA NA NA NA NA NA NA NA
ID_g -12.78 -12.78 -12.78 -12.78 -12.78 -12.78 -10.72 -10.72 -10.72
ID_h -11.65 -11.65 NA NA NA NA -11.65 -11.65 -38.61
ID_i NA NA NA NA NA NA NA NA 45.30
ID_j 4.03 NA 4.76 4.76 4.76 4.39 4.39 4.39 NA
这是我当前使用的功能:
# ----------------------------------------------------------------------------
# GetMatrixWithBlanksFilled
# ----------------------------------------------------------------------------
#
# Arguments:
# inputMatrix --- A matrix with gaps in the time series rows
# fillGapMax --- The max number of columns to carry a number
# forward if there are no more values in the
# time series row.
#
# Returns:
# A matrix with gaps filled.
GetMatrixWithBlanksFilled <- function(inputMatrix, fillGapMax = 6, forwardLooking = TRUE) {
if("DEBUG_ON" %in% ls(globalenv())){browser()}
cntRow <- nrow(inputMatrix)
cntCol <- ncol(inputMatrix)
#
if (forwardLooking) {
for (i in 1:cntRow) {
# Store the location of the first non NA element in the row
firstValueCol <- (1:cntCol)[!is.na(inputMatrix[i,])][1]
if (!(is.na(firstValueCol))) {
if (!(firstValueCol == cntCol)) {
nextValueCol <- firstValueCol
# If there is a a value number in the row and it's not at the end of the time
# series, start iterating through the row while there are more NA values and
# more data values and not at the end of the row continue.
while ((sum(as.numeric(is.na(inputMatrix[i,nextValueCol:cntCol]))))>0 && (sum(as.numeric(!is.na(inputMatrix[i,nextValueCol:cntCol]))))>0 && !(nextValueCol == cntCol)) {
# Find the next NA element
nextNaCol <- (nextValueCol:cntCol)[is.na(inputMatrix[i,nextValueCol:cntCol])][1]
# Find the next value element
nextValueCol <- (nextNaCol:cntCol)[!is.na(inputMatrix[i,nextNaCol:cntCol])][1]
# If there is another value element then fill up all NA elements in between with the last known value
if (!is.na(nextValueCol)) {
inputMatrix[i,nextNaCol:(nextValueCol-1)] <- inputMatrix[i,(nextNaCol-1)]
} else {
# If there is no other value element then fill up all NA elements up to the max number supplied
# with the last known value unless it's close to the end of the row then just fill up to the end.
inputMatrix[i,nextNaCol:min(nextNaCol+fillGapMax,cntCol)] <- inputMatrix[i,(nextNaCol-1)]
nextValueCol <- cntCol
}
}
}
}
}
} else {
for (i in 1:cntRow) {
if (is.na(inputMatrix[i,ncol(inputMatrix)])) {
tempRow <- inputMatrix[i,max(1,length(inputMatrix[i,])-fillGapMax):length(inputMatrix[i,])]
if (length(tempRow[!is.na(tempRow)])>0) {
lastNonNaLocation <- (length(tempRow):1)[!is.na(tempRow)][length(tempRow[!is.na(tempRow)])]
inputMatrix[i,(ncol(inputMatrix)-lastNonNaLocation+2):ncol(inputMatrix)] <- tempRow[!is.na(tempRow)][length(tempRow[!is.na(tempRow)])]
}
}
}
}
return(inputMatrix)
}
然后我用类似的方式调用它:
> fixedMatrix1 <- GetMatrixWithBlanksFilled(testMatrix,fillGapMax=12,forwardLooking=TRUE)
> print(fixedMatrix1)
2010-09-30 2010-10-31 2010-11-30 2010-12-31 2011-01-31 2011-02-28 2011-03-31 2011-04-30 2011-05-31
ID_a NA NA NA NA NA NA NA NA NA
ID_b NA NA NA NA NA NA NA NA NA
ID_c NA NA NA NA NA NA NA NA 4.72
ID_d 29.98 29.98 29.98 29.98 29.98 29.98 29.98 29.98 29.98
ID_e 66.89 66.89 66.89 66.89 66.89 66.89 66.89 50.65 50.65
ID_f NA NA NA NA NA NA NA NA NA
ID_g -12.78 -12.78 -12.78 -12.78 -12.78 -12.78 -10.72 -10.72 -10.72
ID_h -11.65 -11.65 -11.65 -11.65 -11.65 -11.65 -11.65 -11.65 -38.61
ID_i NA NA NA NA NA NA NA NA 45.30
ID_j 4.03 4.03 4.76 4.76 4.76 4.39 4.39 4.39 4.39
或
> fixedMatrix2 <- GetMatrixWithBlanksFilled(testMatrix,fillGapMax=1,forwardLooking=FALSE)
> print(fixedMatrix2)
2010-09-30 2010-10-31 2010-11-30 2010-12-31 2011-01-31 2011-02-28 2011-03-31 2011-04-30 2011-05-31
ID_a NA NA NA NA NA NA NA NA NA
ID_b NA NA NA NA NA NA NA NA NA
ID_c NA NA NA NA NA NA NA NA 4.72
ID_d 29.98 29.98 29.98 NA 29.98 29.98 29.98 29.98 29.98
ID_e 66.89 66.89 66.89 66.89 66.89 66.89 66.89 50.65 50.65
ID_f NA NA NA NA NA NA NA NA NA
ID_g -12.78 -12.78 -12.78 -12.78 -12.78 -12.78 -10.72 -10.72 -10.72
ID_h -11.65 -11.65 NA NA NA NA -11.65 -11.65 -38.61
ID_i NA NA NA NA NA NA NA NA 45.30
ID_j 4.03 NA 4.76 4.76 4.76 4.39 4.39 4.39 4.39
这个示例运行得很快,但是有什么方法可以让它对于大型矩阵更快吗?
> n <- 38
> m <- 5000
> bigM <- matrix(rep(testMatrix,n*m),m*nrow(testMatrix),n*ncol(testMatrix),FALSE)
> system.time(output <- GetMatrixWithBlanksFilled(bigM,fillGapMax=12,forwardLooking=TRUE))
user system elapsed
86.47 0.06 87.24
这个虚拟行有很多 NA 行和完全填充的行,但普通行可能需要大约 15-20 分钟。
更新
关于 Charles 对 na.locf 的评论并不完全反射(reflect)上述逻辑:下面是最终函数如何排除输入等检查的简化版本:
FillGaps <- function( dataMatrix, fillGapMax ) {
require("zoo")
numRow <- nrow(dataMatrix)
numCol <- ncol(dataMatrix)
iteration <- (numCol-fillGapMax)
if(length(iteration)>0) {
for (i in iteration:1) {
tempMatrix <- dataMatrix[,i:(i+fillGapMax),drop=FALSE]
tempMatrix <- t(zoo::na.locf(t(tempMatrix), na.rm=FALSE, maxgap=fillGapMax))
dataMatrix[,i:(i+fillGapMax)] <- tempMatrix
}
}
return(dataMatrix)
}
最佳答案
我可能是错的,但我认为这是在 zoo 中实现的包:使用na.locf
函数。
对于给定的示例矩阵,首先我们应该转置它,在调用 na
函数后,我们“重新转置”结果矩阵。例如:
> t(na.locf(t(testMatrix), na.rm=FALSE, maxgap=12))
2010-09-30 2010-10-31 2010-11-30 2010-12-31 2011-01-31 2011-02-28 2011-03-31 2011-04-30 2011-05-31
ID_a NA NA NA NA NA NA NA NA NA
ID_b NA NA NA NA NA NA NA NA NA
ID_c NA NA NA NA NA NA NA NA 4.72
ID_d 29.98 29.98 29.98 29.98 29.98 29.98 29.98 29.98 29.98
ID_e 66.89 66.89 66.89 66.89 66.89 66.89 66.89 50.65 50.65
ID_f NA NA NA NA NA NA NA NA NA
ID_g -12.78 -12.78 -12.78 -12.78 -12.78 -12.78 -10.72 -10.72 -10.72
ID_h -11.65 -11.65 -11.65 -11.65 -11.65 -11.65 -11.65 -11.65 -38.61
ID_i NA NA NA NA NA NA NA NA 45.30
ID_j 4.03 4.03 4.76 4.76 4.76 4.39 4.39 4.39 4.39
并且使用较小的maxgap
:
> t(na.locf(t(testMatrix), na.rm=FALSE, maxgap=0))
2010-09-30 2010-10-31 2010-11-30 2010-12-31 2011-01-31 2011-02-28 2011-03-31 2011-04-30 2011-05-31
ID_a NA NA NA NA NA NA NA NA NA
ID_b NA NA NA NA NA NA NA NA NA
ID_c NA NA NA NA NA NA NA NA 4.72
ID_d 29.98 29.98 29.98 NA 29.98 29.98 29.98 29.98 NA
ID_e 66.89 66.89 66.89 66.89 66.89 66.89 66.89 50.65 50.65
ID_f NA NA NA NA NA NA NA NA NA
ID_g -12.78 -12.78 -12.78 -12.78 -12.78 -12.78 -10.72 -10.72 -10.72
ID_h -11.65 -11.65 NA NA NA NA -11.65 -11.65 -38.61
ID_i NA NA NA NA NA NA NA NA 45.30
ID_j 4.03 NA 4.76 4.76 4.76 4.39 4.39 4.39 NA
可以看到使用na.locf
获得的性能:
> system.time(output <- GetMatrixWithBlanksFilled(bigM,fillGapMax=12,forwardLooking=TRUE))
user system elapsed
79.238 0.540 80.398
> system.time(output <- t(na.locf(t(bigM), na.rm=FALSE, maxgap=12)))
user system elapsed
17.129 0.267 17.513
关于r - 如何使 R 矩阵填充函数更快?,我们在Stack Overflow上找到一个类似的问题: https://stackoverflow.com/questions/6370424/
C语言sscanf()函数:从字符串中读取指定格式的数据 头文件: ?
最近,我有一个关于工作预评估的问题,即使查询了每个功能的工作原理,我也不知道如何解决。这是一个伪代码。 下面是一个名为foo()的函数,该函数将被传递一个值并返回一个值。如果将以下值传递给foo函数,
CStr 函数 返回表达式,该表达式已被转换为 String 子类型的 Variant。 CStr(expression) expression 参数是任意有效的表达式。 说明 通常,可以
CSng 函数 返回表达式,该表达式已被转换为 Single 子类型的 Variant。 CSng(expression) expression 参数是任意有效的表达式。 说明 通常,可
CreateObject 函数 创建并返回对 Automation 对象的引用。 CreateObject(servername.typename [, location]) 参数 serv
Cos 函数 返回某个角的余弦值。 Cos(number) number 参数可以是任何将某个角表示为弧度的有效数值表达式。 说明 Cos 函数取某个角并返回直角三角形两边的比值。此比值是
CLng 函数 返回表达式,此表达式已被转换为 Long 子类型的 Variant。 CLng(expression) expression 参数是任意有效的表达式。 说明 通常,您可以使
CInt 函数 返回表达式,此表达式已被转换为 Integer 子类型的 Variant。 CInt(expression) expression 参数是任意有效的表达式。 说明 通常,可
Chr 函数 返回与指定的 ANSI 字符代码相对应的字符。 Chr(charcode) charcode 参数是可以标识字符的数字。 说明 从 0 到 31 的数字表示标准的不可打印的
CDbl 函数 返回表达式,此表达式已被转换为 Double 子类型的 Variant。 CDbl(expression) expression 参数是任意有效的表达式。 说明 通常,您可
CDate 函数 返回表达式,此表达式已被转换为 Date 子类型的 Variant。 CDate(date) date 参数是任意有效的日期表达式。 说明 IsDate 函数用于判断 d
CCur 函数 返回表达式,此表达式已被转换为 Currency 子类型的 Variant。 CCur(expression) expression 参数是任意有效的表达式。 说明 通常,
CByte 函数 返回表达式,此表达式已被转换为 Byte 子类型的 Variant。 CByte(expression) expression 参数是任意有效的表达式。 说明 通常,可以
CBool 函数 返回表达式,此表达式已转换为 Boolean 子类型的 Variant。 CBool(expression) expression 是任意有效的表达式。 说明 如果 ex
Atn 函数 返回数值的反正切值。 Atn(number) number 参数可以是任意有效的数值表达式。 说明 Atn 函数计算直角三角形两个边的比值 (number) 并返回对应角的弧
Asc 函数 返回与字符串的第一个字母对应的 ANSI 字符代码。 Asc(string) string 参数是任意有效的字符串表达式。如果 string 参数未包含字符,则将发生运行时错误。
Array 函数 返回包含数组的 Variant。 Array(arglist) arglist 参数是赋给包含在 Variant 中的数组元素的值的列表(用逗号分隔)。如果没有指定此参数,则
Abs 函数 返回数字的绝对值。 Abs(number) number 参数可以是任意有效的数值表达式。如果 number 包含 Null,则返回 Null;如果是未初始化变量,则返回 0。
FormatPercent 函数 返回表达式,此表达式已被格式化为尾随有 % 符号的百分比(乘以 100 )。 FormatPercent(expression[,NumDigitsAfterD
FormatNumber 函数 返回表达式,此表达式已被格式化为数值。 FormatNumber( expression [,NumDigitsAfterDecimal [,Inc
我是一名优秀的程序员,十分优秀!