gpt4 book ai didi

kubernetes - Mesos和Kubernetes之间的调度差异

转载 作者:行者123 更新时间:2023-12-02 12:22:44 25 4
gpt4 key购买 nike

前言:我的问题与this one有关,但是我想对调度的特定方面进行更深入的研究。

经过两步过程,除了Kubernetes的调度是集中式的而且Mesos的调度是分散的这一事实之外,两个项目的调度算法之间有什么区别?

我已经使用Kubernetes半年了,而我从未在实践中使用过Mesos。我了解资源提供的概念,但是我无法在Mesos和Kubernetes调度算法之间建立比较,主要是因为我对这两种工具的实现都不了解。

最佳答案

我不确定这是否具有可比性。 Kubernetes可以作为Mesos框架运行。其调度程序描述为here。它基于对节点进行过滤和排名。
Mesos的两步调度更依赖于框架算法。

  • Mesos向基于DRF algorithm的框架提供了报价。也可以通过使用角色和权重确定框架的优先级。
  • 框架根据要约决定要运行的任务。每个框架都可以实现自己的算法,以使任务与商品匹配。 This is a NP hard problem

  • 附录引用 https://medium.com/@ArmandGrillet/comparison-of-container-schedulers-c427f4f7421
    enter image description here

    Monolithic scheduling

    Monolithic schedulers are composed of a singlescheduling agent handling all the requests, they are commonly used inhigh-performance computing. A monolithic scheduler generally applies asingle-algorithm implementation for all incoming jobs thus runningdifferent scheduling logic depending on job types is difficult. ApacheHadoop YARN [55], a popular architecture for Hadoop that delegatesmany scheduling functions to per-application components, is amonolithic scheduler architecture due to the fact that the resourcerequests from application masters have to be sent to a single globalscheduler in the resource master.

    Two-level scheduling

    A two-levelscheduler adjusts the allocation of resources to each schedulerdynamically using a central coordinator to decide how many resourceseach sub-cluster can have, it is used in Mesos [50] and was used forHadoop-on-Demand (now replaced by YARN). With this architecture, theallocator avoids conflicts by offering a given resource to only oneframework at a time and attempts to achieve dominant resource fairnessby choosing the order and the sizes of the resources it offers. Onlyone framework is examining a resource at a time thus the concurrencycontrol is called pessimistic, a strategy that is less error-prone butslower compared to an optimistic concurrency control offering aresource to many frameworks at the same time.

    Shared-state scheduling

    Omega grants each scheduler full access to the entire cluster,allowing them to compete in a free-for-all manner. There is no centralresource allocator as all of the resource-allocation decisions takeplace in the schedulers. There is no central policy-enforcementengine, individual schedulers are taking decisions in this variant ofthe two-level scheme. By supporting independent schedulerimplementations and exposing the entire allocation state of theschedulers, Omega can scale to many schedulers and works withdifferent workloads with their own scheduling policies [54].

    关于kubernetes - Mesos和Kubernetes之间的调度差异,我们在Stack Overflow上找到一个类似的问题: https://stackoverflow.com/questions/44130725/

    25 4 0
    Copyright 2021 - 2024 cfsdn All Rights Reserved 蜀ICP备2022000587号
    广告合作:1813099741@qq.com 6ren.com