gpt4 book ai didi

python - 在 3D 表面上绘制非均匀数据

转载 作者:行者123 更新时间:2023-12-02 11:51:59 27 4
gpt4 key购买 nike

我有一个简单的代码来为 Matplotlib 绘制 3D 点,如下 -

from mpl_toolkits.mplot3d import axes3d
import matplotlib.pyplot as plt
import numpy as np
from numpy import genfromtxt
import csv

fig = plt.figure()
ax = fig.add_subplot(111, projection='3d')

my_data = genfromtxt('points1.csv', delimiter=',')
points1X = my_data[:,0]
points1Y = my_data[:,1]
points1Z = my_data[:,2]

## I remove the header of the CSV File.
points1X = np.delete(points1X, 0)
points1Y = np.delete(points1Y, 0)
points1Z = np.delete(points1Z, 0)

# Convert the array to 1D array
points1X = np.reshape(points1X,points1X.size)
points1Y = np.reshape(points1Y,points1Y.size)
points1Z = np.reshape(points1Z,points1Z.size)

my_data = genfromtxt('points2.csv', delimiter=',')
points2X = my_data[:,0]
points2Y = my_data[:,1]
points2Z = my_data[:,2]
## I remove the header of the CSV File.
points2X = np.delete(points2X, 0)
points2Y = np.delete(points2Y, 0)
points2Z = np.delete(points2Z, 0)

# Convert the array to 1D array
points2X = np.reshape(points2X,points2X.size)
points2Y = np.reshape(points2Y,points2Y.size)
points2Z = np.reshape(points2Z,points2Z.size)

ax.plot(points1X, points1Y, points1Z, 'd', markersize=8, markerfacecolor='red', label='points1')
ax.plot(points2X, points2Y, points2Z, 'd', markersize=8, markerfacecolor='blue', label='points2')

plt.show()

我的问题是,我试图用我拥有的这些数据点制作一个像样的曲面图。我已经尝试使用 ax.plot_surface() 函数使其看起来不错。为此,我消除了一些点,并重新计算了该函数所需的矩阵类型的输入。然而,我生成的图表更难以解释和理解。因此可能有两种可能性:要么我没有正确使用该函数,要么我尝试绘制的数据不适合曲面图。

我期待的是 3D 图表,它的效果类似于 3D 饼图。我们看到一个片段(被提取出来的)是另一片段的一部分。我没想到它会和那样一模一样,而是某种类似的效果。

我想问的是:

  1. 您认为有可能制作这样的 3D 图表吗?
  2. 有没有更好的方法可以用 3 维表达我的数据?

这是 2 个文件 -

points1.csv

Dim1,Dim2,Dim3
3,8,1
3,8,2
3,8,3
3,8,4
3,8,5
3,9,1
3,9,2
3,9,3
3,9,4
3,9,5
3,10,1
3,10,2
3,10,3
3,10,4
3,10,5
3,11,1
3,11,2
3,11,3
3,11,4
3,11,5
3,12,1
3,12,2
3,13,1
3,13,2
3,14,1
3,14,2
3,15,1
3,15,2
3,16,1
3,16,2
3,17,1
3,17,2
3,18,1
3,18,2
4,8,1
4,8,2
4,8,3
4,8,4
4,8,5
4,9,1
4,9,2
4,9,3
4,9,4
4,9,5
4,10,1
4,10,2
4,10,3
4,10,4
4,10,5
4,11,1
4,11,2
4,11,3
4,11,4
4,11,5
4,12,1
4,13,1
4,14,1
4,15,1
4,16,1
4,17,1
4,18,1
5,8,1
5,8,2
5,8,3
5,8,4
5,8,5
5,9,1
5,9,2
5,9,3
5,9,4
5,9,5
5,10,1
5,10,2
5,10,3
5,10,4
5,10,5
5,11,1
5,11,2
5,11,3
5,11,4
5,11,5
5,12,1
5,13,1
5,14,1
5,15,1
5,16,1
5,17,1
5,18,1
6,8,1
6,8,2
6,8,3
6,8,4
6,8,5
6,9,1
6,9,2
6,9,3
6,9,4
6,9,5
6,10,1
6,11,1
6,12,1
6,13,1
6,14,1
6,15,1
6,16,1
6,17,1
6,18,1
7,8,1
7,8,2
7,8,3
7,8,4
7,8,5
7,9,1
7,9,2
7,9,3
7,9,4
7,9,5

和points2.csv

Dim1,Dim2,Dim3
3,12,3
3,12,4
3,12,5
3,13,3
3,13,4
3,13,5
3,14,3
3,14,4
3,14,5
3,15,3
3,15,4
3,15,5
3,16,3
3,16,4
3,16,5
3,17,3
3,17,4
3,17,5
3,18,3
3,18,4
3,18,5
4,12,2
4,12,3
4,12,4
4,12,5
4,13,2
4,13,3
4,13,4
4,13,5
4,14,2
4,14,3
4,14,4
4,14,5
4,15,2
4,15,3
4,15,4
4,15,5
4,16,2
4,16,3
4,16,4
4,16,5
4,17,2
4,17,3
4,17,4
4,17,5
4,18,2
4,18,3
4,18,4
4,18,5
5,12,2
5,12,3
5,12,4
5,12,5
5,13,2
5,13,3
5,13,4
5,13,5
5,14,2
5,14,3
5,14,4
5,14,5
5,15,2
5,15,3
5,15,4
5,15,5
5,16,2
5,16,3
5,16,4
5,16,5
5,17,2
5,17,3
5,17,4
5,17,5
5,18,2
5,18,3
5,18,4
5,18,5
6,10,2
6,10,3
6,10,4
6,10,5
6,11,2
6,11,3
6,11,4
6,11,5
6,12,2
6,12,3
6,12,4
6,12,5
6,13,2
6,13,3
6,13,4
6,13,5
6,14,2
6,14,3
6,14,4
6,14,5
6,15,2
6,15,3
6,15,4
6,15,5
6,16,2
6,16,3
6,16,4
6,16,5
6,17,2
6,17,3
6,17,4
6,17,5
6,18,2
6,18,3
6,18,4
6,18,5
7,10,1
7,10,2
7,10,3
7,10,4
7,10,5
7,11,1
7,11,2
7,11,3
7,11,4
7,11,5
7,12,1
7,12,2
7,12,3
7,12,4
7,12,5
7,13,1
7,13,2
7,13,3
7,13,4
7,13,5
7,14,1
7,14,2
7,14,3
7,14,4
7,14,5
7,15,1
7,15,2
7,15,3
7,15,4
7,15,5
7,16,1
7,16,2
7,16,3
7,16,4
7,16,5
7,17,1
7,17,2
7,17,3
7,17,4
7,17,5
7,18,1
7,18,2
7,18,3
7,18,4
7,18,5

最佳答案

我不明白你的问题出在哪里,除了你需要对数据进行网格化之外。points1.csv 中的数据如下所示:

import numpy as np
from mpl_toolkits.mplot3d import Axes3D
import matplotlib.pyplot as plt
from scipy.interpolate import griddata

fig = plt.figure(figsize=plt.figaspect(0.5))
ax = fig.add_subplot(1, 2, 1, projection='3d')
# note this: you can skip rows!
my_data = np.genfromtxt('file1.csv', delimiter=',',skiprows=1)
X = my_data[:,0]
Y = my_data[:,1]
Z = my_data[:,2]

xi = np.linspace(X.min(),X.max(),100)
yi = np.linspace(Y.min(),Y.max(),100)
# VERY IMPORTANT, to tell matplotlib how is your data organized
zi = griddata((X, Y), Z, (xi[None,:], yi[:,None]), method='cubic')

CS = plt.contour(xi,yi,zi,15,linewidths=0.5,color='k')
ax = fig.add_subplot(1, 2, 2, projection='3d')

xig, yig = np.meshgrid(xi, yi)

surf = ax.plot_surface(xig, yig, zi,
linewidth=0)

plt.show()

enter image description here我希望这有帮助。

关于python - 在 3D 表面上绘制非均匀数据,我们在Stack Overflow上找到一个类似的问题: https://stackoverflow.com/questions/12730436/

27 4 0
Copyright 2021 - 2024 cfsdn All Rights Reserved 蜀ICP备2022000587号
广告合作:1813099741@qq.com 6ren.com