gpt4 book ai didi

triangulation - 从三角测量推断

转载 作者:行者123 更新时间:2023-12-02 11:47:35 26 4
gpt4 key购买 nike

假设我们有五个顶点:

X = [0 1;
2 1;
4 1;
1 0;
3 0];

三角测量:

T = [1 4 2;
4 5 2;
5 3 2];

以及在顶点上定义的函数值:

Fx = [1;
2;
3;
4;
-5];

然后我们可以使用重心坐标轻松计算三角形内任意点的函数值。对于位于第一个三角形中的点 P = [1 .5],重心坐标为 B = [.25 .5 .25],因此函数计算为 Fxi = 1/4 + 4/2 + 2/4 = 2.75

但是,我很难看出如何推断这个表面。我们可以找到最接近的三角形并从中推断。问题是这会导致函数不连续。考虑例如点P = [2 2]。根据三角形 1,其值为 -0.5,而根据三角形 3,其值为 9.5。

是否有“标准”或普遍接受的方法来从分段线性函数推断?任何指向现有 Material 的指示也非常感谢。

最佳答案

一种可能性是 Shepard 方法:

https://en.wikipedia.org/wiki/Inverse_distance_weighting

生成的函数对顶点处定义的输入值进行插值,并且是非线性的,但在其他任何地方都是连续的。

选择 p=2 通常会给出不错的结果。

关于triangulation - 从三角测量推断,我们在Stack Overflow上找到一个类似的问题: https://stackoverflow.com/questions/39055478/

26 4 0
Copyright 2021 - 2024 cfsdn All Rights Reserved 蜀ICP备2022000587号
广告合作:1813099741@qq.com 6ren.com