- html - 出于某种原因,IE8 对我的 Sass 文件中继承的 html5 CSS 不友好?
- JMeter 在响应断言中使用 span 标签的问题
- html - 在 :hover and :active? 上具有不同效果的 CSS 动画
- html - 相对于居中的 html 内容固定的 CSS 重复背景?
我正在尝试让 spark kubernetes 安装工作,其中 spark 驱动程序节点驻留在其自己的单独 pod(客户端模式)中,并使用 SparkSession.builder 机制来引导集群(不使用 spark-submit)。
我正在从这个工作:
https://spark.apache.org/docs/latest/running-on-kubernetes.html
这是驱动程序用于引导集群的代码:
val sparkSession = SparkSession.builder
.master("k8s://https://kubernetes.default.svc:32768")
.appName("test")
.config("spark.driver.host", "sparkrunner-0")
.config("spark.driver.port", "7077")
.config("spark.driver.blockManager.port", "7078")
.config("spark.kubernetes.container.image","spark-alluxio")
.config("fs.alluxio.impl", "alluxio.hadoop.FileSystem")
.config("fs.alluxio-ft.impl", "alluxio.hadoop.FaultTolerantFileSystem")
.getOrCreate
apiVersion: apps/v1
kind: StatefulSet
metadata:
name: sparkrunner
labels:
app: sparkrunner
spec:
selector:
matchLabels:
app: sparkrunner
serviceName: sparkrunner
replicas: 1
template:
metadata:
labels:
app: sparkrunner
spec:
containers:
- name: sparkrunner
image: "rb/sparkrunner:latest"
imagePullPolicy: Never
ports:
- name: application
containerPort: 9100
- name: driver-rpc-port
containerPort: 7077
- name: blockmanager
containerPort: 7078
# Headless service for stable DNS entries of StatefulSet members.
apiVersion: v1
kind: Service
metadata:
name: sparkrunner
spec:
ports:
- name: driver-rpc-port
protocol: TCP
port: 7077
targetPort: 7077
- name: blockmanager
protocol: TCP
port: 7078
targetPort: 7078
clusterIP: None
selector:
app: sparkrunner
---
# Client service for connecting to any spark instance.
apiVersion: v1
kind: Service
metadata:
name: sparkdriver
spec:
type: NodePort
ports:
- name: sparkdriver
port: 9100
selector:
app: sparkrunner
Using Spark's default log4j profile: org/apache/spark/log4j-defaults.properties
20/04/26 20:24:39 INFO SparkContext: Running Spark version 2.4.2
20/04/26 20:24:40 WARN NativeCodeLoader: Unable to load native-hadoop library for your platform... using builtin-java classes where applicable
20/04/26 20:24:40 INFO SparkContext: Submitted application: test
20/04/26 20:24:40 INFO SecurityManager: Changing view acls to: root
20/04/26 20:24:40 INFO SecurityManager: Changing modify acls to: root
20/04/26 20:24:40 INFO SecurityManager: Changing view acls groups to:
20/04/26 20:24:40 INFO SecurityManager: Changing modify acls groups to:
20/04/26 20:24:40 INFO SecurityManager: SecurityManager: authentication disabled; ui acls disabled; users with view permissions: Set(root); groups with view permissions: Set(); users with modify permissions: Set(root); groups with modify permissions: Set()
20/04/26 20:24:41 INFO Utils: Successfully started service 'sparkDriver' on port 7077.
20/04/26 20:24:41 INFO SparkEnv: Registering MapOutputTracker
20/04/26 20:24:41 INFO SparkEnv: Registering BlockManagerMaster
20/04/26 20:24:41 INFO BlockManagerMasterEndpoint: Using org.apache.spark.storage.DefaultTopologyMapper for getting topology information
20/04/26 20:24:41 INFO BlockManagerMasterEndpoint: BlockManagerMasterEndpoint up
20/04/26 20:24:41 INFO DiskBlockManager: Created local directory at /tmp/blockmgr-e8aa33ba-26d2-421d-9957-9cba1c9a3b9f
20/04/26 20:24:41 INFO MemoryStore: MemoryStore started with capacity 1150.2 MB
20/04/26 20:24:41 INFO SparkEnv: Registering OutputCommitCoordinator
20/04/26 20:24:41 INFO Utils: Successfully started service 'SparkUI' on port 4040.
20/04/26 20:24:41 INFO SparkUI: Bound SparkUI to 0.0.0.0, and started at http://sparkrunner-0:4040
20/04/26 20:24:53 INFO Utils: Successfully started service 'org.apache.spark.network.netty.NettyBlockTransferService' on port 7078.
20/04/26 20:24:53 INFO NettyBlockTransferService: Server created on sparkrunner-0:7078
20/04/26 20:24:53 INFO BlockManager: Using org.apache.spark.storage.RandomBlockReplicationPolicy for block replication policy
20/04/26 20:24:53 INFO BlockManagerMaster: Registering BlockManager BlockManagerId(driver, sparkrunner-0, 7078, None)
20/04/26 20:24:53 INFO BlockManagerMasterEndpoint: Registering block manager sparkrunner-0:7078 with 1150.2 MB RAM, BlockManagerId(driver, sparkrunner-0, 7078, None)
20/04/26 20:24:53 INFO BlockManagerMaster: Registered BlockManager BlockManagerId(driver, sparkrunner-0, 7078, None)
20/04/26 20:24:53 INFO BlockManager: Initialized BlockManager: BlockManagerId(driver, sparkrunner-0, 7078, None)
20/04/26 20:24:53 WARN WatchConnectionManager: Exec Failure
java.net.SocketTimeoutException: connect timed out
at java.net.PlainSocketImpl.socketConnect(Native Method)
at java.net.AbstractPlainSocketImpl.doConnect(AbstractPlainSocketImpl.java:350)
at java.net.AbstractPlainSocketImpl.connectToAddress(AbstractPlainSocketImpl.java:206)
at java.net.AbstractPlainSocketImpl.connect(AbstractPlainSocketImpl.java:188)
at java.net.SocksSocketImpl.connect(SocksSocketImpl.java:392)
at java.net.Socket.connect(Socket.java:589)
at okhttp3.internal.platform.Platform.connectSocket(Platform.java:129)
at okhttp3.internal.connection.RealConnection.connectSocket(RealConnection.java:246)
at okhttp3.internal.connection.RealConnection.connect(RealConnection.java:166)
at okhttp3.internal.connection.StreamAllocation.findConnection(StreamAllocation.java:257)
at okhttp3.internal.connection.StreamAllocation.findHealthyConnection(StreamAllocation.java:135)
at okhttp3.internal.connection.StreamAllocation.newStream(StreamAllocation.java:114)
at okhttp3.internal.connection.ConnectInterceptor.intercept(ConnectInterceptor.java:42)
at okhttp3.internal.http.RealInterceptorChain.proceed(RealInterceptorChain.java:147)
at okhttp3.internal.http.RealInterceptorChain.proceed(RealInterceptorChain.java:121)
at okhttp3.internal.cache.CacheInterceptor.intercept(CacheInterceptor.java:93)
at okhttp3.internal.http.RealInterceptorChain.proceed(RealInterceptorChain.java:147)
at okhttp3.internal.http.RealInterceptorChain.proceed(RealInterceptorChain.java:121)
at okhttp3.internal.http.BridgeInterceptor.intercept(BridgeInterceptor.java:93)
at okhttp3.internal.http.RealInterceptorChain.proceed(RealInterceptorChain.java:147)
at okhttp3.internal.http.RetryAndFollowUpInterceptor.intercept(RetryAndFollowUpInterceptor.java:126)
at okhttp3.internal.http.RealInterceptorChain.proceed(RealInterceptorChain.java:147)
at okhttp3.internal.http.RealInterceptorChain.proceed(RealInterceptorChain.java:121)
at io.fabric8.kubernetes.client.utils.BackwardsCompatibilityInterceptor.intercept(BackwardsCompatibilityInterceptor.java:119)
at okhttp3.internal.http.RealInterceptorChain.proceed(RealInterceptorChain.java:147)
at okhttp3.internal.http.RealInterceptorChain.proceed(RealInterceptorChain.java:121)
at io.fabric8.kubernetes.client.utils.ImpersonatorInterceptor.intercept(ImpersonatorInterceptor.java:68)
at okhttp3.internal.http.RealInterceptorChain.proceed(RealInterceptorChain.java:147)
at okhttp3.internal.http.RealInterceptorChain.proceed(RealInterceptorChain.java:121)
at io.fabric8.kubernetes.client.utils.HttpClientUtils$2.intercept(HttpClientUtils.java:107)
at okhttp3.internal.http.RealInterceptorChain.proceed(RealInterceptorChain.java:147)
at okhttp3.internal.http.RealInterceptorChain.proceed(RealInterceptorChain.java:121)
at okhttp3.RealCall.getResponseWithInterceptorChain(RealCall.java:254)
at okhttp3.RealCall$AsyncCall.execute(RealCall.java:200)
at okhttp3.internal.NamedRunnable.run(NamedRunnable.java:32)
at java.util.concurrent.ThreadPoolExecutor.runWorker(ThreadPoolExecutor.java:1142)
at java.util.concurrent.ThreadPoolExecutor$Worker.run(ThreadPoolExecutor.java:617)
at java.lang.Thread.run(Thread.java:745)
最佳答案
经过更多的探索和刺激,我发现我用于 k8s 服务的地址不正确:
k8s://https://kubernetes.default.svc:32768
我从 kubectl cluster-info 得到了这个,但是我的 minikube 实例可能报告错误(或者可能是代理外部)。当我用这个替换时:
k8s://https://10.96.0.1:443
这是 api 的内部地址,事情开始起作用了。
关于docker - Spark kubernetes 客户端模式(单独的驱动程序pod)设置,我们在Stack Overflow上找到一个类似的问题: https://stackoverflow.com/questions/61449718/
目前正在学习 Spark 的类(class)并了解到执行者的定义: Each executor will hold a chunk of the data to be processed. Thisc
阅读了有关 http://spark.apache.org/docs/0.8.0/cluster-overview.html 的一些文档后,我有一些问题想要澄清。 以 Spark 为例: JavaSp
Spark核心中的调度器与以下Spark Stack(来自Learning Spark:Lightning-Fast Big Data Analysis一书)中的Standalone Schedule
我想在 spark-submit 或 start 处设置 spark.eventLog.enabled 和 spark.eventLog.dir -all level -- 不要求在 scala/ja
我有来自 SQL Server 的数据,需要在 Apache Spark (Databricks) 中进行操作。 在 SQL Server 中,此表的三个键列使用区分大小写的 COLLATION 选项
所有这些有什么区别和用途? spark.local.ip spark.driver.host spark.driver.bind地址 spark.driver.hostname 如何将机器修复为 Sp
我有大约 10 个 Spark 作业,每个作业都会进行一些转换并将数据加载到数据库中。必须为每个作业单独打开和关闭 Spark session ,每次初始化都会耗费时间。 是否可以只创建一次 Spar
/Downloads/spark-3.0.1-bin-hadoop2.7/bin$ ./spark-shell 20/09/23 10:58:45 WARN Utils: Your hostname,
我是 Spark 的完全新手,并且刚刚开始对此进行更多探索。我选择了更长的路径,不使用任何 CDH 发行版安装 hadoop,并且我从 Apache 网站安装了 Hadoop 并自己设置配置文件以了解
TL; 博士 Spark UI 显示的内核和内存数量与我在使用 spark-submit 时要求的数量不同 更多细节: 我在独立模式下运行 Spark 1.6。 当我运行 spark-submit 时
spark-submit 上的文档说明如下: The spark-submit script in Spark’s bin directory is used to launch applicatio
关闭。这个问题是opinion-based .它目前不接受答案。 想改善这个问题吗?更新问题,以便可以通过 editing this post 用事实和引文回答问题. 6 个月前关闭。 Improve
我想了解接收器如何在 Spark Streaming 中工作。根据我的理解,将有一个接收器任务在执行器中运行,用于收集数据并保存为 RDD。当调用 start() 时,接收器开始读取。需要澄清以下内容
有没有办法在不同线程中使用相同的 spark 上下文并行运行多个 spark 作业? 我尝试使用 Vertx 3,但看起来每个作业都在排队并按顺序启动。 如何让它在相同的 spark 上下文中同时运行
我们有一个 Spark 流应用程序,这是一项长期运行的任务。事件日志指向 hdfs 位置 hdfs://spark-history,当我们开始流式传输应用程序时正在其中创建 application_X
我们正在尝试找到一种加载 Spark (2.x) ML 训练模型的方法,以便根据请求(通过 REST 接口(interface))我们可以查询它并获得预测,例如http://predictor.com
Spark newb 问题:我在 spark-sql 中进行完全相同的 Spark SQL 查询并在 spark-shell . spark-shell版本大约需要 10 秒,而 spark-sql版
我正在使用 Spark 流。根据 Spark 编程指南(参见 http://spark.apache.org/docs/latest/programming-guide.html#accumulato
我正在使用 CDH 5.2。我可以使用 spark-shell 运行命令。 如何运行包含spark命令的文件(file.spark)。 有没有办法在不使用 sbt 的情况下在 CDH 5.2 中运行/
我使用 Elasticsearch 已经有一段时间了,但使用 Cassandra 的经验很少。 现在,我有一个项目想要使用 Spark 来处理数据,但我需要决定是否应该使用 Cassandra 还是
我是一名优秀的程序员,十分优秀!