- html - 出于某种原因,IE8 对我的 Sass 文件中继承的 html5 CSS 不友好?
- JMeter 在响应断言中使用 span 标签的问题
- html - 在 :hover and :active? 上具有不同效果的 CSS 动画
- html - 相对于居中的 html 内容固定的 CSS 重复背景?
我有特征值及其重数的ndarray(例如,np.array([(2.2, 2), (3, 3), (5, 1)])
)。我需要计算该特征值的 Jordan 矩阵,而不使用 Python 循环和迭代(列表推导式、for
循环等),而仅使用 NumPy 的函数。
我决定通过以下步骤构建矩阵:
np.vectorize
和 np.eye
以及 np.fill_diagonal
创建此 block :hstack
和 vstack
将 block 组合成一个矩阵。但是我有两个问题:
def eye(t):
eye = np.eye(t[1].astype(int),k=1)
return eye
def jordan_matrix(X: np.ndarray) -> np.ndarray:
dim = np.sum(X[:,1].astype(int))
eyes = np.vectorize(eye, signature='(x)->(n,m)')(X)
return eyes
我收到错误 ValueError: 无法将输入数组从形状 (3,3) 广播到形状 (2,2)
for
及其的情况下创建它们等价物。我走的路对吗?我怎样才能摆脱这个问题?
最佳答案
np.vectorize
基本上会在引擎盖下循环。我们可以使用 NumPy 函数在 Python 级别进行实际矢量化。这是一种这样的方法 -
def blockwise_jordan(a):
r = a[:,1].astype(int)
v = np.repeat(a[:,0],r)
out = np.diag(v)
n = out.shape[1]
fillvals = np.ones(n, dtype=out.dtype)
fillvals[r[:-1].cumsum()-1] = 0
out.flat[1::out.shape[1]+1] = fillvals
return out
示例运行 -
In [52]: X = np.array([(2.2, 2), (3, 3), (5, 1)])
In [53]: blockwise_jordan(X)
Out[53]:
array([[2.2, 1. , 0. , 0. , 0. , 0. ],
[0. , 2.2, 0. , 0. , 0. , 0. ],
[0. , 0. , 3. , 1. , 0. , 0. ],
[0. , 0. , 0. , 3. , 1. , 0. ],
[0. , 0. , 0. , 0. , 3. , 0. ],
[0. , 0. , 0. , 0. , 0. , 5. ]])
优化#1
我们可以替换最后三个步骤来执行 1 和 0 的条件赋值,就像这样 -
out.flat[1::n+1] = 1
c = r[:-1].cumsum()-1
out[c,c+1] = 0
关于python - 使用 NumPy 从特征值创建 Jordan 矩阵,我们在Stack Overflow上找到一个类似的问题: https://stackoverflow.com/questions/59632361/
我对 CBMutableCharacteristic 的特征值可以有多长感到困惑。如果我有一个归档对象数组,我可以将特征值设置为这个归档数组吗?或者我最好为数组中的每个归档对象设置一个单独的特征? 最
我在 Python Sympy 中使用来计算带有变量的矩阵 A 的特征值(例如)。有谁知道如何计算这样的矩阵的特征值?命令 A.eigenvals() 不起作用。例如下面的代码: x = symbol
我正在计算协方差矩阵的特征值,它是实数且对称的半正定矩阵。因此,特征值和特征向量都应该是实数,然而numpy.linalg.eig()返回具有(几乎)零虚部的复数值。 协方差矩阵太大,这里贴不出来,但
我正在尝试对图像使用光谱聚类。我首先计算亲和性矩阵,然后尝试获取特征向量。但是,在 7056x7056 矩阵上,eig() 调用花费的时间太长。关于如何改进这个的任何建议?也许我应该使用不同形式的亲和
我目前正在使用 Dart/Flutter BLE 插件来更好地了解 BLE 设备。 插件: https://pub.dartlang.org/packages/flutter_blue 当我连接到我的
我在使用 Eigen 库时遇到错误,我想做的就是从 Eigen::VectorXf 中减去一个标量。所以,我的代码如下: #define VECTOR_TYPE Eigen::VectorXf #de
假设我有一个对称矩阵 M,它不是正(半)定的,我想计算它的 k 顶(绝对值)特征值(和相应的特征向量)。现在,可以使用截断的 SVD 来做到这一点,它将返回所述特征值的绝对值,然后必须检查符号并找到相
我有一个关于 split 节点的问题。我有 4 个特征,想要预测这个人是否会玩,可能会玩,也可能不会玩。根据信息增益,我将“天气”作为第一个要分割的特征,其中“多雨”、“炎热”和“潮湿”作为分支。下雨
我有一个 ~3000x3000 类似协方差的矩阵,我在该矩阵上计算特征值-特征向量分解(它是一个 OpenCV 矩阵,我使用 cv::eigen() 来完成工作)。 但是,我实际上只需要前 30 个特
我想计算 K*es,其中 K 是一个 Eigen 矩阵(维度 pxp)和 es 是一个 px1 随机二进制 vector ,值为 1。 例如,如果 p=5 和 t=2 一个可能的 es 是 [1,0,
我正在尝试使用 CoreBluetooth 框架从设备读取所有可用服务及其特征值。 - (void)centralManager:(CBCentralManager *)central didDisc
我已经在 Internet 上多次看到这个主题,但从未见过一个完整、全面的解决方案,它可以适用于当前库版本的 sklearn 的所有用例。有人可以尝试使用以下示例解释如何实现吗? In this ex
我的输入 数据框(缩短)如下所示: >>> import numpy as np >>> import pandas as pd >>> df_in = pd.DataFrame([[1, 2, 'a
我想读取低功耗蓝牙(智能)的特征值。我不想使用 gatttool 或 btgatt-client。 d-bus 也没有帮助。我想在 Python 中执行此操作。我在以下内容中找不到任何示例: http
我是一名优秀的程序员,十分优秀!