gpt4 book ai didi

python - 在 Python 中矢量化多元正态 CDF(累积密度函数)

转载 作者:行者123 更新时间:2023-12-02 11:21:46 46 4
gpt4 key购买 nike

如何在 Python 中矢量化多元正态 CDF(累积密度函数)?
当看 this发布后,我发现有一个“移植”到 Python 的多变量 CDF 的 Fortran 实现。这意味着我可以针对一个特定案例轻松评估 CDF。
但是,我在将这个函数有效地应用于多个条目时遇到了很多麻烦。
具体来说,我需要“矢量化”的函数需要 4 个参数:

  • 积分的下限(向量)
  • 积分上限(向量)
  • 正态随机变量(向量)的均值
  • 正态随机变量的协方差矩阵(矩阵)

  • 但我试图多次有效地评估这个包含 1000 多个元素的列表的函数。
    这是一些代码来说明我的问题。在下面的示例中,我只是使用随机数据来说明我的观点。
    import time
    import numpy as np
    from scipy.stats.mvn import mvnun # library that calculates MVN CDF

    np.random.seed(666)

    iters = 1000 # number of times the whole dataset will be evaluated
    obs = 1500 # number of elements in the dataset
    dim = 2 # dimension of multivariate normal distribution

    lower = np.random.rand(obs,dim)
    upper = lower + np.random.rand(obs,dim)
    means = np.random.rand(obs,dim)

    # Creates a symmetric matrix - used for the random covariance matrices
    def make_sym_matrix(dim,vals):
    m = np.zeros([dim,dim])
    xs,ys = np.triu_indices(dim,k=1)
    m[xs,ys] = vals[:-dim]
    m[ys,xs] = vals[:-dim]
    m[ np.diag_indices(dim) ] = vals[-dim:]
    return m

    # Generating the random covariance matrices
    covs = []
    for i in range(obs):
    cov_vals = np.random.rand(int((dim**2 + dim)/2))
    cov_mtx = make_sym_matrix(dim,cov_vals)
    covs.append(cov_mtx)
    covs = np.array(covs)

    # Here is where the trouble starts.
    time_start = time.time()
    for i in range(iters):
    results = []
    for j in range(obs):
    this_p, this_i = mvnun(lower[j],upper[j],means[j],covs[j])
    results.append(this_p)
    time_end = time.time()

    print(time_end-time_start)
    在这里,我有一个包含 1500 个观察值的数据集,我对其进行了 1000 次评估。在我的机器上,这需要 6.74399995804 秒来计算。
    请注意,我并不是要摆脱外部 for 循环(在 i 上)。我只是创建它来模仿我的真正问题。我的 for 循环 真的试图消除的是内部的(超过 j)。
    执行时间可能是 大大如果我找到了一种有效评估整个数据集的 CDF 的方法,则减少。
    我知道 mvnun 函数最初是用 Fortran 编写的(原始代码 here )并使用 f2pye“移植”到 Python,如 here 所示.
    谁能帮我解决这个问题?我已经开始研究 theano,但似乎我唯一的选择是使用扫描功能,这也可能没有太大的改进。
    谢谢!!!

    最佳答案

    这只是部分答案,但如果多元正态分布的维数为 ,则有一种方法可以提高速度。小(2 或 3)如果 协方差矩阵保持不变 .

    import numpy as np
    import openturns as ot

    def computeRectangularDomainProbability(lower, upper, means, cov_matrix):
    """
    Compute the probability of a rectangular solid
    under a multinormal distribution.

    """
    # Center the bounds of the rectangular solid on the mean
    lower -= means
    upper -= means

    # The same covariance matrix for all rectangular solids.
    cov_matrix = ot.CovarianceMatrix(cov_matrix)

    # This way, we only need to define one multivariate normal distribution.
    # That is the trick that allows vectorization.
    dimension = lower.shape[1]
    multinormal = ot.Normal([0.0] * dimension, cov_matrix)

    # The probability of the rectangular solid is a weighted sum
    # of the CDF of the vertices (with weights equal to 1 or -1).
    # The following block computes the CDFs and applies the correct weight.
    full_reverse_binary = np.array(list(bin(2**dimension)[:1:-1]), dtype=int)
    prob = 0.0
    for i in range(2**dimension):
    reverse_binary = np.array(list(bin(i)[:1:-1]), dtype=int)
    reverse_binary = np.append(reverse_binary,
    np.zeros(len(full_reverse_binary) -
    len(reverse_binary) -
    1)).astype(int)
    point = np.zeros(lower.shape)
    for num, digit in enumerate(reverse_binary):
    if digit:
    point[:, num] = upper[:, num]
    else:
    point[:, num] = lower[:, num]
    cdf = np.array(multinormal.computeCDF(point))
    if (reverse_binary.sum() % 2) == (dimension % 2):
    prob += cdf
    else:
    prob -= cdf

    return prob.reshape(-1,)
    测试脚本:维度 2
    iters = 1000 # loop size
    obs = 1500 # number of rectangular solids
    dim = 2 # dimension of multivariate normal distribution
    import time
    import numpy as np
    from scipy.stats.mvn import mvnun # library that calculates MVN CDF
    from sklearn.datasets import make_spd_matrix
    import openturns as ot

    time_mvnun = 0.0
    time_openturns = 0.0
    discrepancy = 0.0
    np.random.seed(0)

    for iteration in range(iters):

    lower = np.random.rand(obs,dim)
    upper = lower + np.random.rand(obs,dim)
    means = np.random.rand(obs,dim)

    # Generating the random covariance matrices with sklearn
    # to make sure they are positive semi-definite
    cov_mtx = make_spd_matrix(dim)

    time_start = time.time()
    results = []
    for j in range(obs):
    this_p, this_i = mvnun(lower[j],upper[j],means[j],cov_mtx)
    results.append(this_p)
    results = np.array(results)
    time_end = time.time()
    time_mvnun += time_end - time_start


    time_start = time.time()
    otparallel = computeRectangularDomainProbability(lower, upper, means, cov_mtx)
    time_end = time.time()
    time_openturns += time_end - time_start

    mvnorm_vs_otparallel = np.abs(results - otparallel).sum()
    discrepancy += mvnorm_vs_otparallel

    print('Dimension {}'.format(dim))

    # Print computation time
    print('mvnun time: {0:e}'.format(time_mvnun))
    print('openturns time: {0:e}'.format(time_openturns))
    print('ratio mvnun/ot: {0:f}'.format(time_mvnun / time_openturns))

    # Check that the results are the same for mvnum and openturns
    print('mvnun-openturns result discrepancy: {0:e}'.format(discrepancy))
    我机器上的输出:
    Dimension 2
    mvnun time: 4.040635e+00
    openturns time: 3.588211e+00
    ratio mvnun/ot: 1.126086
    mvnun-openturns result discrepancy: 8.057912e-11
    有一个轻微的加速:略高于 10%。
    维度 3
    让我们更改控制脚本的全局变量。
    iters = 100 # loop size
    obs = 1500 # number of rectangular solids
    dim = 3 # dimension of multivariate normal distribution
    我机器上的输出:
    Dimension 3
    mvnun time: 2.378337e+01
    openturns time: 1.596872e+00
    ratio mvnun/ot: 14.893725
    mvnun-openturns result discrepancy: 4.537064e-03
    在维度 3 中的增益更为显着:建议的代码快了 15 倍。
    维度 4
    不幸的是,openturns 在维度 4 上慢了很多。它包含了维度 1、2 和 3 的 CDF 的智能实现,但回退到维度大于 3 的更慢、更通用的实现。
    iters = 1 # loop size
    obs = 15 # number of rectangular solids
    dim = 4 # dimension of multivariate normal distribution
    Dimension 4
    mvnun time: 7.289171e-03
    openturns time: 3.689714e+01
    ratio mvnun/ot: 0.000198
    mvnun-openturns result discrepancy: 6.297527e-07
    在第 4 维中,建议的代码慢了大约 4 个数量级!这可能是因为在维度 4 中,它需要为每个长方体计算 16=2^4 个 CDF,并且这些计算中的每一个都比在较小维度中慢。

    关于python - 在 Python 中矢量化多元正态 CDF(累积密度函数),我们在Stack Overflow上找到一个类似的问题: https://stackoverflow.com/questions/46396662/

    46 4 0
    Copyright 2021 - 2024 cfsdn All Rights Reserved 蜀ICP备2022000587号
    广告合作:1813099741@qq.com 6ren.com