gpt4 book ai didi

python - 如何使用 sklearn 管道缩放 Keras 自动编码器模型的目标值?

转载 作者:行者123 更新时间:2023-12-02 11:17:38 25 4
gpt4 key购买 nike

我正在使用 sklearn 管道来构建 Keras 自动编码器模型并使用 gridsearch 来查找最佳超参数。如果我使用多层感知器模型进行分类,这很好用;但是,在自动编码器中,我需要输出值与输入相同。换句话说,我使用的是 StandardScalar管道中的实例以缩放输入值,因此这引出了我的问题:我如何制作 StandardScalar管道内的实例同时处理输入数据和目标数据,以便它们最终相同?
我提供了一个代码片段作为示例。

from sklearn.datasets import make_classification
from sklearn.preprocessing import StandardScaler
from sklearn.pipeline import Pipeline
from sklearn.model_selection import GridSearchCV, KFold
from keras.models import Sequential
from keras.layers import Dense, Dropout
from keras.optimizers import RMSprop, Adam
from tensorflow.keras.wrappers.scikit_learn import KerasRegressor

X, y = make_classification (n_features = 50, n_redundant = 0, random_state = 0,
scale = 100, n_clusters_per_class = 1)

# Define wrapper
def create_model (learn_rate = 0.01, input_shape, metrics = ['mse']):
model = Sequential ()
model.add (Dense (units = 64, activation = 'relu',
input_shape = (input_shape, )))
model.add (Dense (32, activation = 'relu'))
model.add (Dense (8, activation = 'relu'))
model.add (Dense (32, activation = 'relu'))
model.add (Dense (input_shape, activation = None))
model.compile (loss = 'mean_squared_error',
optimizer = Adam (lr = learn_rate),
metrics = metrics)
return model

# Create scaler
my_scaler = StandardScaler ()
steps = list ()
steps.append (('scaler', my_scaler))
standard_scaler_transformer = Pipeline (steps)

# Create classifier
clf = KerasRegressor (build_fn = create_model, verbose = 2)

# Assemble pipeline
# How to scale input and output??
clf = Pipeline (steps = [('scaler', my_scaler),
('classifier', clf)],
verbose = True)

# Run grid search
param_grid = {'classifier__input_shape' : [X.shape [1]],
'classifier__batch_size' : [50],
'classifier__learn_rate' : [0.001],
'classifier__epochs' : [5, 10]}
cv = KFold (n_splits = 5, shuffle = False)
grid = GridSearchCV (estimator = clf, param_grid = param_grid,
scoring = 'neg_mean_squared_error', verbose = 1, cv = cv)
grid_result = grid.fit (X, X)

print ('Best: %f using %s' % (grid_result.best_score_, grid_result.best_params_))

最佳答案

您可以使用 TransformedTargetRegressor 通过提供函数(即使用 y 参数)或转换器(即 func 参数)对目标值(即 transformer )应用任意变换。
在这种情况下(即拟合自动编码器模型),因为您想应用相同的 StandardScalar目标值上的实例,您可以使用 transformer争论。它可以通过以下方式之一完成:

  • 您可以将其用作管道步骤之一,包装回归量:
    scaler = StandardScaler()
    regressor = KerasRegressor(...)

    pipe = Pipeline(steps=[
    ('scaler', scaler),
    ('ttregressor', TransformedTargetRegressor(regressor, transformer=scaler))
    ])

    # Use `__regressor` to access the regressor hyperparameters
    param_grid = {'ttregressor__regressor__hyperparam_name' : ...}

    gridcv = GridSearchCV(estimator=pipe, param_grid=param_grid, ...)
    gridcv.fit(X, X)
  • 或者,您可以将它包裹在 GridSearchCV 周围。像这样:
     ttgridcv = TransformedTargetRegressor(GridSearchCV(...), transformer=scalar)
    ttgridcv.fit(X, X)

    # Use `regressor_` attribute to access the fitted regressor (i.e. `GridSearchCV` instance)
    print(ttgridcv.regressor_.best_score_, ttgridcv.regressor_.best_params_))
  • 关于python - 如何使用 sklearn 管道缩放 Keras 自动编码器模型的目标值?,我们在Stack Overflow上找到一个类似的问题: https://stackoverflow.com/questions/63094847/

    25 4 0
    Copyright 2021 - 2024 cfsdn All Rights Reserved 蜀ICP备2022000587号
    广告合作:1813099741@qq.com 6ren.com