- html - 出于某种原因,IE8 对我的 Sass 文件中继承的 html5 CSS 不友好?
- JMeter 在响应断言中使用 span 标签的问题
- html - 在 :hover and :active? 上具有不同效果的 CSS 动画
- html - 相对于居中的 html 内容固定的 CSS 重复背景?
我正在使用 sklearn 管道来构建 Keras 自动编码器模型并使用 gridsearch 来查找最佳超参数。如果我使用多层感知器模型进行分类,这很好用;但是,在自动编码器中,我需要输出值与输入相同。换句话说,我使用的是 StandardScalar
管道中的实例以缩放输入值,因此这引出了我的问题:我如何制作 StandardScalar
管道内的实例同时处理输入数据和目标数据,以便它们最终相同?
我提供了一个代码片段作为示例。
from sklearn.datasets import make_classification
from sklearn.preprocessing import StandardScaler
from sklearn.pipeline import Pipeline
from sklearn.model_selection import GridSearchCV, KFold
from keras.models import Sequential
from keras.layers import Dense, Dropout
from keras.optimizers import RMSprop, Adam
from tensorflow.keras.wrappers.scikit_learn import KerasRegressor
X, y = make_classification (n_features = 50, n_redundant = 0, random_state = 0,
scale = 100, n_clusters_per_class = 1)
# Define wrapper
def create_model (learn_rate = 0.01, input_shape, metrics = ['mse']):
model = Sequential ()
model.add (Dense (units = 64, activation = 'relu',
input_shape = (input_shape, )))
model.add (Dense (32, activation = 'relu'))
model.add (Dense (8, activation = 'relu'))
model.add (Dense (32, activation = 'relu'))
model.add (Dense (input_shape, activation = None))
model.compile (loss = 'mean_squared_error',
optimizer = Adam (lr = learn_rate),
metrics = metrics)
return model
# Create scaler
my_scaler = StandardScaler ()
steps = list ()
steps.append (('scaler', my_scaler))
standard_scaler_transformer = Pipeline (steps)
# Create classifier
clf = KerasRegressor (build_fn = create_model, verbose = 2)
# Assemble pipeline
# How to scale input and output??
clf = Pipeline (steps = [('scaler', my_scaler),
('classifier', clf)],
verbose = True)
# Run grid search
param_grid = {'classifier__input_shape' : [X.shape [1]],
'classifier__batch_size' : [50],
'classifier__learn_rate' : [0.001],
'classifier__epochs' : [5, 10]}
cv = KFold (n_splits = 5, shuffle = False)
grid = GridSearchCV (estimator = clf, param_grid = param_grid,
scoring = 'neg_mean_squared_error', verbose = 1, cv = cv)
grid_result = grid.fit (X, X)
print ('Best: %f using %s' % (grid_result.best_score_, grid_result.best_params_))
最佳答案
您可以使用 TransformedTargetRegressor
通过提供函数(即使用 y
参数)或转换器(即 func
参数)对目标值(即 transformer
)应用任意变换。
在这种情况下(即拟合自动编码器模型),因为您想应用相同的 StandardScalar
目标值上的实例,您可以使用 transformer
争论。它可以通过以下方式之一完成:
scaler = StandardScaler()
regressor = KerasRegressor(...)
pipe = Pipeline(steps=[
('scaler', scaler),
('ttregressor', TransformedTargetRegressor(regressor, transformer=scaler))
])
# Use `__regressor` to access the regressor hyperparameters
param_grid = {'ttregressor__regressor__hyperparam_name' : ...}
gridcv = GridSearchCV(estimator=pipe, param_grid=param_grid, ...)
gridcv.fit(X, X)
GridSearchCV
周围。像这样: ttgridcv = TransformedTargetRegressor(GridSearchCV(...), transformer=scalar)
ttgridcv.fit(X, X)
# Use `regressor_` attribute to access the fitted regressor (i.e. `GridSearchCV` instance)
print(ttgridcv.regressor_.best_score_, ttgridcv.regressor_.best_params_))
关于python - 如何使用 sklearn 管道缩放 Keras 自动编码器模型的目标值?,我们在Stack Overflow上找到一个类似的问题: https://stackoverflow.com/questions/63094847/
我有兴趣在 tf.keras 中训练一个模型,然后用 keras 加载它。我知道这不是高度建议,但我对使用 tf.keras 来训练模型很感兴趣,因为 tf.keras 更容易构建输入管道 我想利用
我进行了大量搜索,但仍然无法弄清楚如何编写具有多个交互输出的自定义损失函数。 我有一个神经网络定义为: def NeuralNetwork(): inLayer = Input((2,));
我正在阅读一篇名为 Differential Learning Rates 的文章在 Medium 上,想知道这是否可以应用于 Keras。我能够找到在 pytorch 中实现的这项技术。这可以在 K
我正在实现一个神经网络分类器,以打印我正在使用的这个神经网络的损失和准确性: score = model.evaluate(x_test, y_test, verbose=False) model.m
我最近在查看模型摘要时遇到了这个问题。 我想知道,[(None, 16)] 和有什么区别?和 (None, 16) ?为什么输入层有这样的输入形状? 来源:model.summary() can't
我正在尝试使用 Keras 创建自定义损失函数。我想根据输入计算损失函数并预测神经网络的输出。 我尝试在 Keras 中使用 customloss 函数。我认为 y_true 是我们为训练提供的输出,
我有一组样本,每个样本都是一组属性的序列(例如,一个样本可以包含 10 个序列,每个序列具有 5 个属性)。属性的数量总是固定的,但序列的数量(时间戳)可能因样本而异。我想使用这个样本集在 Keras
Keras 在训练集和测试集文件夹中发现了错误数量的类。我有 3 节课,但它一直说有 4 节课。有人可以帮我吗? 这里的代码: cnn = Sequential() cnn.add(Conv2D(32
我想编写一个自定义层,在其中我可以在两次运行之间将变量保存在内存中。例如, class MyLayer(Layer): def __init__(self, out_dim = 51, **kwarg
我添加了一个回调来降低学习速度: keras.callbacks.ReduceLROnPlateau(monitor='val_loss', factor=0.5, patience=100,
在 https://keras.io/layers/recurrent/我看到 LSTM 层有一个 kernel和一个 recurrent_kernel .它们的含义是什么?根据我的理解,我们需要 L
问题与标题相同。 我不想打开 Python,而是使用 MacOS 或 Ubuntu。 最佳答案 Python 库作者将版本号放入 .__version__ 。您可以通过在命令行上运行以下命令来打印它:
Keras 文档并不清楚这实际上是什么。我知道我们可以用它来将输入特征空间压缩成更小的空间。但从神经设计的角度来看,这是如何完成的呢?它是一个自动编码器,RBM吗? 最佳答案 据我所知,嵌入层是一个简
我想实现[http://ydwen.github.io/papers/WenECCV16.pdf]中解释的中心损失]在喀拉斯 我开始创建一个具有 2 个输出的网络,例如: inputs = Input
我正在尝试实现多对一模型,其中输入是大小为 的词向量d .我需要输出一个大小为 的向量d 在 LSTM 结束时。 在此 question ,提到使用(对于多对一模型) model = Sequenti
我有不平衡的训练数据集,这就是我构建自定义加权分类交叉熵损失函数的原因。但问题是我的验证集是平衡的,我想使用常规的分类交叉熵损失。那么我可以在 Keras 中为验证集传递不同的损失函数吗?我的意思是用
DL 中的一项常见任务是将输入样本归一化为零均值和单位方差。可以使用如下代码“手动”执行规范化: mean = np.mean(X, axis = 0) std = np.std(X, axis =
我正在尝试学习 Keras 并使用 LSTM 解决分类问题。我希望能够绘制 准确率和损失,并在训练期间更新图。为此,我正在使用 callback function . 由于某种原因,我在回调中收到的准
在 Keras 内置函数中嵌入使用哪种算法?Word2vec?手套?其他? https://keras.io/layers/embeddings/ 最佳答案 简短的回答是都不是。本质上,GloVe 的
我有一个使用 Keras 完全实现的 LSTM RNN,我想使用梯度剪裁,梯度范数限制为 5(我正在尝试复制一篇研究论文)。在实现神经网络方面,我是一个初学者,我将如何实现? 是否只是(我正在使用 r
我是一名优秀的程序员,十分优秀!