gpt4 book ai didi

r - plm 或 lme4 用于面板数据的随机和固定效应模型

转载 作者:行者123 更新时间:2023-12-02 11:16:14 27 4
gpt4 key购买 nike

我可以使用在面板数据上指定随机和固定效应模型吗? ?

我正在重做 中 Wooldridge(2013 年,第 494-5 页)的示例 14.4 。感谢this sitethis blog post我已经成功地在中做到了这一点包,但我很好奇我是否可以在 中做同样的事情包?

这是我在中所做的事情包裹。如果有任何关于我如何使用 做同样的事情的指示,我将不胜感激。 。首先,需要的包和数据的加载,

# install.packages(c("wooldridge", "plm", "stargazer"), dependencies = TRUE)
library(wooldridge)
data(wagepan)

其次,我使用 来估计示例 14.4 (Wooldridge 2013) 中估计的三个模型。包,

library(plm) 
Pooled.ols <- plm(lwage ~ educ + black + hisp + exper+I(exper^2)+ married + union +
factor(year), data = wagepan, index=c("nr","year") , model="pooling")

random.effects <- plm(lwage ~ educ + black + hisp + exper + I(exper^2) + married + union +
factor(year), data = wagepan, index = c("nr","year") , model = "random")

fixed.effects <- plm(lwage ~ I(exper^2) + married + union + factor(year),
data = wagepan, index = c("nr","year"), model="within")

第三,我使用 输出结果模拟 Wooldridge (2013) 中的表 14.2,

stargazer::stargazer(Pooled.ols,random.effects,fixed.effects, type="text",
column.labels=c("OLS (pooled)","Random Effects","Fixed Effects"),
dep.var.labels = c("log(wage)"), keep.stat=c("n"),
keep=c("edu","bla","his","exp","marr","union"), align = TRUE, digits = 4)
#> ======================================================
#> Dependent variable:
#> -----------------------------------------
#> log(wage)
#> OLS (pooled) Random Effects Fixed Effects
#> (1) (2) (3)
#> ------------------------------------------------------
#> educ 0.0913*** 0.0919***
#> (0.0052) (0.0107)
#>
#> black -0.1392*** -0.1394***
#> (0.0236) (0.0477)
#>
#> hisp 0.0160 0.0217
#> (0.0208) (0.0426)
#>
#> exper 0.0672*** 0.1058***
#> (0.0137) (0.0154)
#>
#> I(exper2) -0.0024*** -0.0047*** -0.0052***
#> (0.0008) (0.0007) (0.0007)
#>
#> married 0.1083*** 0.0640*** 0.0467**
#> (0.0157) (0.0168) (0.0183)
#>
#> union 0.1825*** 0.1061*** 0.0800***
#> (0.0172) (0.0179) (0.0193)
#>
#> ------------------------------------------------------
#> Observations 4,360 4,360 4,360
#> ======================================================
#> Note: *p<0.1; **p<0.05; ***p<0.01

中是否有同样简单的方法来做到这一点? ?我应该坚持 ?为什么/为什么不?

最佳答案

除了估计方法的不同之外,似乎确实主要是一个问题词汇和语法

# install.packages(c("wooldridge", "plm", "stargazer", "lme4"), dependencies = TRUE)
library(wooldridge)
library(plm)
#> Le chargement a nécessité le package : Formula
library(lme4)
#> Le chargement a nécessité le package : Matrix
data(wagepan)

您的第一个示例是一个简单的线性模型,忽略组nr
您无法使用 lme4 做到这一点,因为不存在“随机效应”(在 lme4 意义上)。
这就是 Gelman & Hill 所说的完整池化方法。

Pooled.ols <- plm(lwage ~ educ + black + hisp + exper+I(exper^2)+ married + 
union + factor(year), data = wagepan,
index=c("nr","year"), model="pooling")

Pooled.ols.lm <- lm(lwage ~ educ + black + hisp + exper+I(exper^2)+ married + union +
factor(year), data = wagepan)

你的第二个例子似乎相当于带有nr的随机拦截混合模型作为随机效应(但所有预测变量的斜率都是固定的)。
这就是 Gelman & Hill 所说的部分池化方法。

random.effects <- plm(lwage ~ educ + black + hisp + exper + I(exper^2) + married + 
union + factor(year), data = wagepan,
index = c("nr","year") , model = "random")

random.effects.lme4 <- lmer(lwage ~ educ + black + hisp + exper + I(exper^2) + married +
union + factor(year) + (1|nr), data = wagepan)

您的第三个示例似乎对应于 nr 是固定效果的情况,并且您为每个组计算不同的 nr 截距。
再次强调:您不能使用 lme4 做到这一点,因为不存在“随机效应”(在 lme4 意义上)。
这就是 Gelman & Hill 所说的“无池化”方法。

fixed.effects <- plm(lwage ~ I(exper^2) + married + union + factor(year), 
data = wagepan, index = c("nr","year"), model="within")

wagepan$nr <- factor(wagepan$nr)
fixed.effects.lm <- lm(lwage ~ I(exper^2) + married + union + factor(year) + nr,
data = wagepan)

比较结果:

stargazer::stargazer(Pooled.ols, Pooled.ols.lm, 
random.effects, random.effects.lme4 ,
fixed.effects, fixed.effects.lm,
type="text",
column.labels=c("OLS (pooled)", "lm no pool.",
"Random Effects", "lme4 partial pool.",
"Fixed Effects", "lm compl. pool."),
dep.var.labels = c("log(wage)"),
keep.stat=c("n"),
keep=c("edu","bla","his","exp","marr","union"),
align = TRUE, digits = 4)
#>
#> =====================================================================================================
#> Dependent variable:
#> ----------------------------------------------------------------------------------------
#> log(wage)
#> panel OLS panel linear panel OLS
#> linear linear mixed-effects linear
#> OLS (pooled) lm no pool. Random Effects lme4 partial pool. Fixed Effects lm compl. pool.
#> (1) (2) (3) (4) (5) (6)
#> -----------------------------------------------------------------------------------------------------
#> educ 0.0913*** 0.0913*** 0.0919*** 0.0919***
#> (0.0052) (0.0052) (0.0107) (0.0108)
#>
#> black -0.1392*** -0.1392*** -0.1394*** -0.1394***
#> (0.0236) (0.0236) (0.0477) (0.0485)
#>
#> hisp 0.0160 0.0160 0.0217 0.0218
#> (0.0208) (0.0208) (0.0426) (0.0433)
#>
#> exper 0.0672*** 0.0672*** 0.1058*** 0.1060***
#> (0.0137) (0.0137) (0.0154) (0.0155)
#>
#> I(exper2) -0.0024*** -0.0024*** -0.0047*** -0.0047*** -0.0052*** -0.0052***
#> (0.0008) (0.0008) (0.0007) (0.0007) (0.0007) (0.0007)
#>
#> married 0.1083*** 0.1083*** 0.0640*** 0.0635*** 0.0467** 0.0467**
#> (0.0157) (0.0157) (0.0168) (0.0168) (0.0183) (0.0183)
#>
#> union 0.1825*** 0.1825*** 0.1061*** 0.1053*** 0.0800*** 0.0800***
#> (0.0172) (0.0172) (0.0179) (0.0179) (0.0193) (0.0193)
#>
#> -----------------------------------------------------------------------------------------------------
#> Observations 4,360 4,360 4,360 4,360 4,360 4,360
#> =====================================================================================================
#> Note: *p<0.1; **p<0.05; ***p<0.01

Gelman A, Hill J (2007) 使用回归和多级/分层模型进行数据分析。剑桥大学出版社(一本非常非常好的书!)

reprex package 创建于 2018-03-08 (v0.2.0)。

关于r - plm 或 lme4 用于面板数据的随机和固定效应模型,我们在Stack Overflow上找到一个类似的问题: https://stackoverflow.com/questions/49033016/

27 4 0
Copyright 2021 - 2024 cfsdn All Rights Reserved 蜀ICP备2022000587号
广告合作:1813099741@qq.com 6ren.com