- html - 出于某种原因,IE8 对我的 Sass 文件中继承的 html5 CSS 不友好?
- JMeter 在响应断言中使用 span 标签的问题
- html - 在 :hover and :active? 上具有不同效果的 CSS 动画
- html - 相对于居中的 html 内容固定的 CSS 重复背景?
我是 TF 新手,想从源代码编译,因为我的桌面没有支持 AVX 指令的 CPU 或 GPU。我的系统有一个 Intel i7 930 处理器(来自 nehalem 家族的 Bloomfield)和一个 Nvidea GTS-250 CPU。是的,我知道,两者都在变长。
以下是我在此过程中失败的完整堆栈。我正在按照以下网页的说明进行操作。
https://www.tensorflow.org/install/source_windows
我推进编译并最终看到以下错误......
H:\Python\TensorFlowCompile\tensorflow>python ./configure.py
WARNING: --batch mode is deprecated. Please instead explicitly shut down your Bazel server using the command "bazel shutdown".
You have bazel 0.29.1 installed.
Please specify the location of python. [Default is C:\Users\Zeek\AppData\Local\Programs\Python\Python37\python.exe]:
Found possible Python library paths:
C:\Users\Zeek\AppData\Local\Programs\Python\Python37\lib\site-packages
Please input the desired Python library path to use. Default is [C:\Users\Zeek\AppData\Local\Programs\Python\Python37\lib\site-packages]
Do you wish to build TensorFlow with XLA JIT support? [y/N]: N
No XLA JIT support will be enabled for TensorFlow.
Do you wish to build TensorFlow with ROCm support? [y/N]: N
No ROCm support will be enabled for TensorFlow.
Do you wish to build TensorFlow with CUDA support? [y/N]: N
No CUDA support will be enabled for TensorFlow.
Please specify optimization flags to use during compilation when bazel option "--config=opt" is specified [Default is /arch:AVX]: --config=v2 -march=nehalem
Would you like to override eigen strong inline for some C++ compilation to reduce the compilation time? [Y/n]: Y
Eigen strong inline overridden.
Preconfigured Bazel build configs. You can use any of the below by adding "--config=<>" to your build command. See .bazelrc for more details.
--config=mkl # Build with MKL support.
--config=monolithic # Config for mostly static monolithic build.
--config=ngraph # Build with Intel nGraph support.
--config=numa # Build with NUMA support.
--config=dynamic_kernels # (Experimental) Build kernels into separate shared objects.
--config=v2 # Build TensorFlow 2.x instead of 1.x.
Preconfigured Bazel build configs to DISABLE default on features:
--config=noaws # Disable AWS S3 filesystem support.
--config=nogcp # Disable GCP support.
--config=nohdfs # Disable HDFS support.
--config=nonccl # Disable NVIDIA NCCL support.
H:\Python\TensorFlowCompile\tensorflow>bazel build //tensorflow/tools/pip_package:build_pip_package
Starting local Bazel server and connecting to it...
INFO: Options provided by the client:
Inherited 'common' options: --isatty=0 --terminal_columns=269
INFO: Options provided by the client:
'build' options: --python_path=C:/Users/Zeek/AppData/Local/Programs/Python/Python37/python.exe
INFO: Reading rc options for 'build' from h:\python\tensorflowcompile\tensorflow\.bazelrc:
'build' options: --apple_platform_type=macos --define framework_shared_object=true --define open_source_build=true --java_toolchain=//third_party/toolchains/java:tf_java_toolchain --host_java_toolchain=//third_party/toolchains/java:tf_java_toolchain --define=use_fast_cpp_protos=true --define=allow_oversize_protos=true --spawn_strategy=standalone --strategy=Genrule=standalone -c opt --cxxopt=-std=c++14 --host_cxxopt=-std=c++14 --announce_rc --define=grpc_no_ares=true --define=PREFIX=/usr --define=LIBDIR=$(PREFIX)/lib --define=INCLUDEDIR=$(PREFIX)/include --config=v2
INFO: Reading rc options for 'build' from h:\python\tensorflowcompile\tensorflow\.tf_configure.bazelrc:
'build' options: --action_env PYTHON_BIN_PATH=C:/Users/Zeek/AppData/Local/Programs/Python/Python37/python.exe --action_env PYTHON_LIB_PATH=C:/Users/Zeek/AppData/Local/Programs/Python/Python37/lib/site-packages --python_path=C:/Users/Zeek/AppData/Local/Programs/Python/Python37/python.exe --config monolithic --copt=-w --host_copt=-w --copt=-DWIN32_LEAN_AND_MEAN --host_copt=-DWIN32_LEAN_AND_MEAN --copt=-DNOGDI --host_copt=-DNOGDI --verbose_failures --distinct_host_configuration=false --define=override_eigen_strong_inline=true --action_env TF_CONFIGURE_IOS=0
INFO: Found applicable config definition build:v2 in file h:\python\tensorflowcompile\tensorflow\.bazelrc: --define=tf_api_version=2
INFO: Found applicable config definition build:monolithic in file h:\python\tensorflowcompile\tensorflow\.bazelrc: --define framework_shared_object=false
INFO: Found applicable config definition build:monolithic in file h:\python\tensorflowcompile\tensorflow\.bazelrc: --define framework_shared_object=false
Loading:
Loading: 0 packages loaded
Loading: 0 packages loaded
Analyzing: target //tensorflow/tools/pip_package:build_pip_package (1 packages loaded, 0 targets configured)
Analyzing: target //tensorflow/tools/pip_package:build_pip_package (6 packages loaded, 18 targets configured)
Analyzing: target //tensorflow/tools/pip_package:build_pip_package (6 packages loaded, 18 targets configured)
Analyzing: target //tensorflow/tools/pip_package:build_pip_package (6 packages loaded, 18 targets configured)
INFO: Call stack for the definition of repository 'com_google_protobuf' which is a tf_http_archive (rule definition at H:/python/tensorflowcompile/tensorflow/third_party/repo.bzl:121:19):
- H:/python/tensorflowcompile/tensorflow/tensorflow/workspace.bzl:434:5
- H:/python/tensorflowcompile/tensorflow/WORKSPACE:19:1
Analyzing: target //tensorflow/tools/pip_package:build_pip_package (6 packages loaded, 18 targets configured)
INFO: Repository 'com_google_protobuf' used the following cache hits instead of downloading the corresponding file.
* Hash 'b9e92f9af8819bbbc514e2902aec860415b70209f31dfc8c4fa72515a5df9d59' for https://storage.googleapis.com/mirror.tensorflow.org/github.com/protocolbuffers/protobuf/archive/310ba5ee72661c081129eb878c1bbcec936b20f0.tar.gz
If the definition of 'com_google_protobuf' was updated, verify that the hashes were also updated.
ERROR: An error occurred during the fetch of repository 'com_google_protobuf':
Traceback (most recent call last):
File "H:/python/tensorflowcompile/tensorflow/third_party/repo.bzl", line 101
_apply_patch(ctx, ctx.attr.patch_file)
File "H:/python/tensorflowcompile/tensorflow/third_party/repo.bzl", line 68, in _apply_patch
_execute_and_check_ret_code(ctx, cmd)
File "H:/python/tensorflowcompile/tensorflow/third_party/repo.bzl", line 52, in _execute_and_check_ret_code
fail("Non-zero return code({1}) when ...))
Non-zero return code(127) when executing 'C:\msys64\usr\bin\bash.exe -l -c "patch" "-p1" "-d" "C:/users/Zeek/_bazel_Zeek/hfhzrtpt/external/com_google_protobuf" "-i" "H:/python/tensorflowcompile/tensorflow/third_party/protobuf/protobuf.patch"':
Stdout:
Stderr: /usr/bin/bash: patch: command not found
ERROR: Analysis of target '//tensorflow/tools/pip_package:build_pip_package' failed; build aborted: no such package '@com_google_protobuf//': Traceback (most recent call last):
File "H:/python/tensorflowcompile/tensorflow/third_party/repo.bzl", line 101
_apply_patch(ctx, ctx.attr.patch_file)
File "H:/python/tensorflowcompile/tensorflow/third_party/repo.bzl", line 68, in _apply_patch
_execute_and_check_ret_code(ctx, cmd)
File "H:/python/tensorflowcompile/tensorflow/third_party/repo.bzl", line 52, in _execute_and_check_ret_code
fail("Non-zero return code({1}) when ...))
Non-zero return code(127) when executing 'C:\msys64\usr\bin\bash.exe -l -c "patch" "-p1" "-d" "C:/users/Zeek/_bazel_Zeek/hfhzrtpt/external/com_google_protobuf" "-i" "H:/python/tensorflowcompile/tensorflow/third_party/protobuf/protobuf.patch"':
Stdout:
Stderr: /usr/bin/bash: patch: command not found
INFO: Elapsed time: 19.298s
INFO: 0 processes.
FAILED: Build did NOT complete successfully (6 packages loaded, 18 targets configured)
FAILED: Build did NOT complete successfully (6 packages loaded, 18 targets configured)
H:\Python\TensorFlowCompile\tensorflow>python ./configure.py
Extracting Bazel installation...
WARNING: --batch mode is deprecated. Please instead explicitly shut down your Bazel server using the command "bazel shutdown".
You have bazel 1.0.1 installed.
Please downgrade your bazel installation to version 0.29.1 or lower to build TensorFlow! To downgrade: download the installer for the old version (from https://github.com/bazelbuild/bazel/releases) then run the installer.
INFO: Analyzed target //tensorflow/tools/pip_package:build_pip_package (0 packages loaded, 0 targets configured).
INFO: Found 1 target...
[0 / 23] [Prepa] PythonZipper tensorflow/python/keras/api/create_tensorflow.python_api_1_keras_python_api_gen_compat_v1.zip ... (3 actions, 0 running)
ERROR: H:/python/tensorflowcompile/tensorflow/tensorflow/lite/python/BUILD:46:1: PythonZipper tensorflow/lite/python/tflite_convert.zip failed (Exit 255)
FATAL: MappedOutputFile(bazel-out/x64_windows-opt/bin/tensorflow/lite/python/tflite_convert.zip): CreateFileMapping failed
Target //tensorflow/tools/pip_package:build_pip_package failed to build
INFO: Elapsed time: 38.195s, Critical Path: 4.35s
INFO: 0 processes.
FAILED: Build did NOT complete successfully
FAILED: Build did NOT complete successfully
java.lang.RuntimeException: Unrecoverable error while evaluating node 'REPOSITORY_DIRECTORY:@local_config_cc' (requested by nodes 'REPOSITORY:@local_config_cc')
at com.google.devtools.build.skyframe.AbstractParallelEvaluator$Evaluate.run(AbstractParallelEvaluator.java:528)
at com.google.devtools.build.lib.concurrent.AbstractQueueVisitor$WrappedRunnable.run(AbstractQueueVisitor.java:399)
at java.base/java.util.concurrent.ForkJoinTask$AdaptedRunnableAction.exec(Unknown Source)
at java.base/java.util.concurrent.ForkJoinTask.doExec(Unknown Source)
at java.base/java.util.concurrent.ForkJoinPool$WorkQueue.topLevelExec(Unknown Source)
at java.base/java.util.concurrent.ForkJoinPool.scan(Unknown Source)
at java.base/java.util.concurrent.ForkJoinPool.runWorker(Unknown Source)
at java.base/java.util.concurrent.ForkJoinWorkerThread.run(Unknown Source)
Caused by: java.nio.file.InvalidPathException: Illegal char <> at index 60: C:/users/bill/_bazel_bill/hfhzrtpt/external/local_config_cc/*********************************************************************
** Visual Studio 2017 Developer Command Prompt v15.0
** Copyright (c) 2017 Microsoft Corporation
C:/Program Files (x86)/Microsoft Visual Studio/2017/BuildTools/VC/Auxiliary/Build/VCVARSALL.BAT
at java.base/sun.nio.fs.WindowsPathParser.normalize(Unknown Source)
at java.base/sun.nio.fs.WindowsPathParser.parse(Unknown Source)
at java.base/sun.nio.fs.WindowsPathParser.parse(Unknown Source)
at java.base/sun.nio.fs.WindowsPath.parse(Unknown Source)
at java.base/sun.nio.fs.WindowsFileSystem.getPath(Unknown Source)
at java.base/java.nio.file.Path.of(Unknown Source)
at java.base/java.nio.file.Paths.get(Unknown Source)
at com.google.devtools.build.lib.vfs.JavaIoFileSystem.getNioPath(JavaIoFileSystem.java:84)
at com.google.devtools.build.lib.vfs.JavaIoFileSystem.exists(JavaIoFileSystem.java:119)
at com.google.devtools.build.lib.vfs.Path.exists(Path.java:356)
at com.google.devtools.build.lib.bazel.repository.skylark.SkylarkPath.exists(SkylarkPath.java:79)
at java.base/jdk.internal.reflect.NativeMethodAccessorImpl.invoke0(Native Method)
at java.base/jdk.internal.reflect.NativeMethodAccessorImpl.invoke(Unknown Source)
at java.base/jdk.internal.reflect.DelegatingMethodAccessorImpl.invoke(Unknown Source)
at java.base/java.lang.reflect.Method.invoke(Unknown Source)
at com.google.devtools.build.lib.syntax.MethodDescriptor.call(MethodDescriptor.java:135)
at com.google.devtools.build.lib.syntax.DotExpression.eval(DotExpression.java:126)
at com.google.devtools.build.lib.syntax.DotExpression.doEval(DotExpression.java:51)
at com.google.devtools.build.lib.syntax.Expression.eval(Expression.java:75)
at com.google.devtools.build.lib.syntax.UnaryOperatorExpression.doEval(UnaryOperatorExpression.java:98)
at com.google.devtools.build.lib.syntax.Expression.eval(Expression.java:75)
at com.google.devtools.build.lib.syntax.Eval.execIf(Eval.java:139)
at com.google.devtools.build.lib.syntax.Eval.execDispatch(Eval.java:214)
at com.google.devtools.build.lib.syntax.Eval.exec(Eval.java:183)
at com.google.devtools.build.lib.syntax.UserDefinedFunction.call(UserDefinedFunction.java:91)
at com.google.devtools.build.lib.syntax.BaseFunction.callWithArgArray(BaseFunction.java:474)
at com.google.devtools.build.lib.syntax.BaseFunction.call(BaseFunction.java:436)
at com.google.devtools.build.lib.syntax.FuncallExpression.callFunction(FuncallExpression.java:992)
at com.google.devtools.build.lib.syntax.FuncallExpression.doEval(FuncallExpression.java:904)
at com.google.devtools.build.lib.syntax.Expression.eval(Expression.java:75)
at com.google.devtools.build.lib.syntax.UnaryOperatorExpression.doEval(UnaryOperatorExpression.java:98)
at com.google.devtools.build.lib.syntax.Expression.eval(Expression.java:75)
at com.google.devtools.build.lib.syntax.Eval.execIf(Eval.java:139)
at com.google.devtools.build.lib.syntax.Eval.execDispatch(Eval.java:214)
at com.google.devtools.build.lib.syntax.Eval.exec(Eval.java:183)
at com.google.devtools.build.lib.syntax.UserDefinedFunction.call(UserDefinedFunction.java:91)
at com.google.devtools.build.lib.syntax.BaseFunction.callWithArgArray(BaseFunction.java:474)
at com.google.devtools.build.lib.syntax.BaseFunction.call(BaseFunction.java:436)
at com.google.devtools.build.lib.syntax.FuncallExpression.callFunction(FuncallExpression.java:992)
at com.google.devtools.build.lib.syntax.FuncallExpression.doEval(FuncallExpression.java:904)
at com.google.devtools.build.lib.syntax.Expression.eval(Expression.java:75)
at com.google.devtools.build.lib.syntax.Eval.execAssignment(Eval.java:72)
at com.google.devtools.build.lib.syntax.Eval.execDispatch(Eval.java:192)
at com.google.devtools.build.lib.syntax.Eval.exec(Eval.java:183)
at com.google.devtools.build.lib.syntax.Eval.execStatements(Eval.java:231)
at com.google.devtools.build.lib.syntax.Eval.execIf(Eval.java:144)
at com.google.devtools.build.lib.syntax.Eval.execDispatch(Eval.java:214)
at com.google.devtools.build.lib.syntax.Eval.exec(Eval.java:183)
at com.google.devtools.build.lib.syntax.UserDefinedFunction.call(UserDefinedFunction.java:91)
at com.google.devtools.build.lib.syntax.BaseFunction.callWithArgArray(BaseFunction.java:474)
at com.google.devtools.build.lib.syntax.BaseFunction.call(BaseFunction.java:436)
at com.google.devtools.build.lib.syntax.FuncallExpression.callFunction(FuncallExpression.java:992)
at com.google.devtools.build.lib.syntax.FuncallExpression.doEval(FuncallExpression.java:904)
at com.google.devtools.build.lib.syntax.Expression.eval(Expression.java:75)
at com.google.devtools.build.lib.syntax.Eval.execAssignment(Eval.java:72)
at com.google.devtools.build.lib.syntax.Eval.execDispatch(Eval.java:192)
at com.google.devtools.build.lib.syntax.Eval.exec(Eval.java:183)
at com.google.devtools.build.lib.syntax.UserDefinedFunction.call(UserDefinedFunction.java:91)
at com.google.devtools.build.lib.syntax.BaseFunction.callWithArgArray(BaseFunction.java:474)
at com.google.devtools.build.lib.syntax.BaseFunction.call(BaseFunction.java:436)
at com.google.devtools.build.lib.syntax.FuncallExpression.callFunction(FuncallExpression.java:992)
at com.google.devtools.build.lib.syntax.FuncallExpression.doEval(FuncallExpression.java:904)
at com.google.devtools.build.lib.syntax.Expression.eval(Expression.java:75)
at com.google.devtools.build.lib.syntax.Eval.execDispatch(Eval.java:201)
at com.google.devtools.build.lib.syntax.Eval.exec(Eval.java:183)
at com.google.devtools.build.lib.syntax.Eval.execStatements(Eval.java:231)
at com.google.devtools.build.lib.syntax.Eval.execIfBranch(Eval.java:83)
at com.google.devtools.build.lib.syntax.Eval.execDispatch(Eval.java:198)
at com.google.devtools.build.lib.syntax.Eval.exec(Eval.java:183)
at com.google.devtools.build.lib.syntax.Eval.execIf(Eval.java:140)
at com.google.devtools.build.lib.syntax.Eval.execDispatch(Eval.java:214)
at com.google.devtools.build.lib.syntax.Eval.exec(Eval.java:183)
at com.google.devtools.build.lib.syntax.UserDefinedFunction.call(UserDefinedFunction.java:91)
at com.google.devtools.build.lib.syntax.BaseFunction.callWithArgArray(BaseFunction.java:474)
at com.google.devtools.build.lib.syntax.BaseFunction.call(BaseFunction.java:436)
at com.google.devtools.build.lib.bazel.repository.skylark.SkylarkRepositoryFunction.fetch(SkylarkRepositoryFunction.java:173)
at com.google.devtools.build.lib.rules.repository.RepositoryDelegatorFunction.fetchRepository(RepositoryDelegatorFunction.java:298)
at com.google.devtools.build.lib.rules.repository.RepositoryDelegatorFunction.compute(RepositoryDelegatorFunction.java:225)
at com.google.devtools.build.skyframe.AbstractParallelEvaluator$Evaluate.run(AbstractParallelEvaluator.java:451)
... 7 more
FAILED: Build did NOT complete successfully (231 packages loaded, 3779 targets configured)
WARNING: Waiting for server process to terminate (waited 5 seconds, waiting at most 60)
H:\Python\TensorFlowCompile\tensorflow>
最佳答案
TensorFlow 尚不支持 Bazel 1.x(即将推出,但尚未完成),所以在此之前您需要 0.29.1。
cmd.exe
shell,无需运行 Visual Studio 命令行。 python -m pip install numpy keras_preprocessing
python configure.py
bazel build --config=opt //tensorflow/tools/pip_package:build_pip_package
关于tensorflow - 无法在 Intel i7 930 CPU 上从源代码编译 TensorFlow; GTS-250 显卡,我们在Stack Overflow上找到一个类似的问题: https://stackoverflow.com/questions/58547555/
我想为我的应用程序设计背景图像。图像应填满 iPhone 屏幕。什么图像尺寸适用于 3G 和 4G? A) 320 x 480。B) 640 x 960。 我更喜欢使用 B,因为它的质量更高,3G 会
我需要为我的类(class)作业编写一些关于低级视频卡控制的应用程序。例如 - 温度、工作 SM、管理对它们的访问等。操作系统 linux、tesla c1060。 你能给我一些建议在哪里搜索这类信息
我目前在安装带有 gpu 支持的 tensorflow 时遇到一些问题。 这是我遵循的指南。 安装 NVIDIA CUDA(预装) 安装 NVIDIA cuDNN(预装) 安装 bazel wget
我对如何使用一些视频卡驱动程序 API 读取 GPU 温度(图形处理单元,显卡主芯片)的方法感兴趣? 每个人都知道有两个不同的芯片制造商(至少是流行的)- ATI 和 nVIDIA - 因此有两种不同
关闭。这个问题不满足Stack Overflow guidelines .它目前不接受答案。 想改善这个问题吗?更新问题,使其成为 on-topic对于堆栈溢出。 7年前关闭。 Improve thi
关闭。这个问题不符合Stack Overflow guidelines .它目前不接受答案。 我们不允许在 Stack Overflow 上提出有关通用计算硬件和软件的问题。您可以编辑问题,使其成为
我的笔记本电脑有两个显卡,一个是高性能 NVIDIA 显卡,另一个是板载 Intel 显卡。然而,当我调用 IDirect3D9::GetAdapterCount 时,它只找到板载 Intel 适配器
关闭。这个问题不符合Stack Overflow guidelines .它目前不接受答案。 我们不允许提问寻求书籍、工具、软件库等的推荐。您可以编辑问题,以便用事实和引用来回答。 关闭 5 年前。
我想使用两个 xserver,每个都在一个单独的显卡上运行,实际上我正在使用两个显示器,我的计算机上安装了两个不同的显卡,如下所示: root@ziomario-Z87-HD3:/home/zioma
当我在我的容器中时,我运行 lspci | grep -i nvidia 并没有显示。 当我从 NVIDIA 提供的示例中运行 ./deviceQuery 时,我得到 no CUDA-capabl
我有一台带有 Intel GMA 3150 显卡的 Asus Eee PC,操作系统是 Windows 7 Starter,并且安装了 DirectX 11。 当我运行我的项目时,它使用 XNA 4.
我知道 Quadro 2000 是 CUDA 2.1。我的电脑规范如下: Quadro 2000,配备 16GB RAM。 至强(R) CPU W3520 @2.67GHz 2.66GHz Windo
我需要帮助将 C++ 头文件转换为 Delphi。 下面是原始头文件和我的Delphi翻译。 C++ header : #if _MSC_VER > 1000 #pragma once #endif
我在配备 Radeon Pro 560X 4096 MB 和 Intel UHD Graphics 630 1536 MB 的 MacBook Pro 上用 python 运行一些 Keras/ten
如何在 c sharp 中获取我的显卡的共享系统内存、总可用内存和系统显存? 最佳答案 我会考虑使用 WMI ,特别是 Win32_VideoController目的。 WMI Code Creato
PowerVR SGX 卡中与纹理内存相关的“共享内存”到底是什么。没有与此相关的适当文档。 通常对于 iphone 上的应用程序(假设 3gs/ipad PowerVR SGX 卡),它被限制为使用
以防我购买带有集成英特尔® UHD 显卡 620 的 Thinkpad 并在其下安装 Ubuntu Linux 和 TensorFlow。然后,稍后我添加带有 Nvidia GPU 的 eGPU。我应
我是 TF 新手,想从源代码编译,因为我的桌面没有支持 AVX 指令的 CPU 或 GPU。我的系统有一个 Intel i7 930 处理器(来自 nehalem 家族的 Bloomfield)和一个
因此,在 64 位 Ubuntu 上,我正在使用 LWJGL 进行开发,但是在 Windows(和 Mac,尽管我测试的更少)上运行良好的代码在我的新机器上出现了问题。 基本上,如果我尝试初始化全屏模
我是一名优秀的程序员,十分优秀!