- html - 出于某种原因,IE8 对我的 Sass 文件中继承的 html5 CSS 不友好?
- JMeter 在响应断言中使用 span 标签的问题
- html - 在 :hover and :active? 上具有不同效果的 CSS 动画
- html - 相对于居中的 html 内容固定的 CSS 重复背景?
我正在编写一些代码来优化神经网络架构,因此有一个 python 函数 create_nn(parms)
来创建和初始化 keras 模型。然而,我遇到的问题是,经过较少的迭代后,模型的训练时间比平时要长得多(最初一个时期需要 10 秒,然后大约在第 14 个模型之后(每个模型训练 20 个时期)需要 60 秒/时代)。我知道这不是因为不断发展的架构,因为如果我重新启动脚本并开始它结束的情况,它就会恢复到正常速度。
我正在运行
from keras import backend as K
然后是
K.clear_session()
训练任何给定的新模型后。
一些其他详细信息:
对于前 12 个模型,每个时期的训练时间大致保持在 10 秒/时期。然后,在第 13 个模型中,每个 epoch 的训练时间稳步攀升至 60 秒。然后每个 epoch 的训练时间徘徊在 60 秒/epoch 左右。
我正在运行 keras,并以 Tensorflow 作为后端
我正在使用 Amazon EC2 t2.xlarge 实例
有足够的可用 RAM(7GB 可用,带有 5GB 大小的数据集)
我删除了一堆层和参数,但基本上 create_nn
看起来像:
def create_nn(features, timesteps, number_of_filters):
inputs = Input(shape = (timesteps, features))
x = GaussianNoise(stddev=0.005)(inputs)
#Layer 1.1
x = Convolution1D(number_of_filters, 3, padding='valid')(x)
x = Activation('relu')(x)
x = Flatten()(x)
x = Dense(10)(x)
x = BatchNormalization()(x)
x = Activation('relu')(x)
x = Dropout(0.5)(x)
# Output layer
outputs = Dense(1, activation='sigmoid')(x)
model = Model(inputs=inputs, outputs=outputs)
# Compile and Return
model.compile(optimizer = 'adam', loss = 'binary_crossentropy', metrics = ['accuracy'])
print('CNN model built succesfully.')
return model
请注意,虽然Sequential
模型可以在这个虚拟示例中工作,但实际用例需要功能性 API。
如何解决这个问题?
最佳答案
简短回答:您需要在创建每个新模型之前使用tf.keras.backend.clear_session()
。
此问题似乎仅在关闭急切执行时才会发生。
好吧,让我们在使用和不使用clear_session 的情况下进行实验。 make_model
的代码位于此响应的末尾。
首先,我们看一下使用clear session时的训练时间。我们将运行此实验 10 次并打印结果
non_seq_time = [ make_model(clear_session=True) for _ in range(10)]
non sequential
Elapse = 1.06039
Elapse = 1.20795
Elapse = 1.04357
Elapse = 1.03374
Elapse = 1.02445
Elapse = 1.00673
Elapse = 1.01712
Elapse = 1.021
Elapse = 1.17026
Elapse = 1.04961
如您所见,训练时间保持不变
现在让我们在不使用清晰 session 的情况下重新运行实验并查看训练时间
non_seq_time = [ make_model(clear_session=False) for _ in range(10)]
non sequential
Elapse = 1.10954
Elapse = 1.13042
Elapse = 1.12863
Elapse = 1.1772
Elapse = 1.2013
Elapse = 1.31054
Elapse = 1.27734
Elapse = 1.32465
Elapse = 1.32387
Elapse = 1.33252
如您所见,没有clear_session,训练时间会增加
# Training time increases - and how to fix it
# Setup and imports
# %tensorflow_version 2.x
import tensorflow as tf
import tensorflow.keras.layers as layers
import tensorflow.keras.models as models
from time import time
# if you comment this out, the problem doesn't happen
# it only happens when eager execution is disabled !!
tf.compat.v1.disable_eager_execution()
(x_train, y_train), (x_test, y_test) = tf.keras.datasets.mnist.load_data()
# Let's build that network
def make_model(activation="relu", hidden=2, units=100, clear_session=False):
# -----------------------------------
# . HERE WE CAN TOGGLE CLEAR SESSION
# -----------------------------------
if clear_session:
tf.keras.backend.clear_session()
start = time()
inputs = layers.Input(shape=[784])
x = inputs
for num in range(hidden) :
x = layers.Dense(units=units, activation=activation)(x)
outputs = layers.Dense(units=10, activation="softmax")(x)
model = tf.keras.Model(inputs=inputs, outputs=outputs)
model.compile(optimizer='sgd', loss='sparse_categorical_crossentropy', metrics=['accuracy'])
results = model.fit(x_train, y_train, validation_data=(x_test, y_test), batch_size=200, verbose=0)
elapse = time()-start
print(f"Elapse = {elapse:8.6}")
return elapse
# Let's try it out and time it
# prime it first
make_model()
print("Use clear session")
non_seq_time = [ make_model(clear_session=True) for _ in range(10)]
print("Don't use clear session")
non_seq_time = [ make_model(clear_session=False) for _ in range(10)]
关于python - 每次重复后,keras 模型的训练都会变慢,我们在Stack Overflow上找到一个类似的问题: https://stackoverflow.com/questions/45796167/
我是一名优秀的程序员,十分优秀!