- html - 出于某种原因,IE8 对我的 Sass 文件中继承的 html5 CSS 不友好?
- JMeter 在响应断言中使用 span 标签的问题
- html - 在 :hover and :active? 上具有不同效果的 CSS 动画
- html - 相对于居中的 html 内容固定的 CSS 重复背景?
最佳答案
我同意@user1808924。我认为仍然值得解释一下 XGBoost 在幕后的工作原理。
首先,您在叶子中看到的分数不是概率。它们是回归值。
在梯度提升树中,只有回归树。为了预测一个人是否喜欢电脑游戏,模型(XGboost)会将其视为回归问题。这里的标签变成 1.0 表示是,0.0 表示否。然后,XGboost 将回归树放入训练中。当然,树会返回 +2、+0.1、-1 之类的值,这是我们在叶子处得到的。
我们将所有“原始分数”相加,然后通过应用sigmoid函数将它们转换为概率。
叶子分数 (w
) 的计算公式为 this formula :
w = - (sum(gi) / (sum(hi) + lambda))
其中g
和h
是一阶导数(梯度)和二阶导数(hessian)。
为了演示,我们选择第一棵树的 -1
值的叶子。假设我们的目标函数是 mean squared error (mse)我们选择lambda = 0
。
对于mse,我们有g = (y_pred - y_true
) 和h=1
。我只是去掉了常量2,事实上,你可以保留它,结果应该保持不变。另请注意:在第t_th次迭代中,y_pred
是我们在第(t-1)次次迭代后得到的预测(直到那个时候)。
一些假设:
y_true = 0
)。1
(即,我们猜测所有人都喜欢游戏。请注意,我故意选择 1
以获得相同的结果与第一棵树。事实上,初始预测可以是均值(默认为均方误差)、中值(默认为>平均绝对误差),...叶子中所有观察值的标签)。我们计算每个人的g
和h
:
g_girl = y_pred - y_true = 1 - 0 = 1
。同样,我们有 g_grandpa = g_grandma = 1
。h_girl = h_grandpa = h_grandma = 1
将g, h
值代入上面的公式,我们有:
w = -( (g_girl + g_grandpa + g_grandma) / (h_girl + h_grandpa + h_grandma) ) = -1
最后一点:在实践中,我们在绘制树时看到的叶子分数有点不同。它将乘以学习率,即 w *learning_rate
。
关于xgboost - 在这个 XGBoost 树中如何计算休假分数?,我们在Stack Overflow上找到一个类似的问题: https://stackoverflow.com/questions/41433209/
是否可以计算 xgboost 模型的内部节点预测? R 包 gbm 提供了对每棵树的内部节点的预测。 然而,xgboost 输出仅显示对模型最后一片叶子的预测。 xgboost 输出: 请注意,质量列
我想知道哪个损失函数使用 XGBoost 进行多类分类。我找到了 in this question二元情况下逻辑分类的损失函数。 我认为对于多类情况,它可能与 GBM 中的相同(对于 K 类)whic
XGBoost 使用加法训练的方法,在该方法中对先前模型的残差进行建模。 虽然这是顺序的,那么它如何并行计算呢? 最佳答案 Xgboost 不会像您提到的那样并行运行多棵树,您需要在每棵树之后进行预测
我正在看下面的图片。 有人可以解释一下它们是如何计算的吗?我以为 N 是 -1,是 +1,但后来我不明白这个小女孩怎么有 0.1。但这对于树 2 也不起作用。 最佳答案 我同意@user1808924
我已经使用 Amazon Sagemaker 构建了一个 XGBoost 模型,但是我找不到任何可以帮助我解释模型并验证它是否学习了正确的依赖关系的东西。 通常,我们可以通过 python API (
这是我的代码: xgb <- xgboost(data = as.matrix(df_all_combined), label = as.matrix(target_tr
在 xgboost 中可以设置参数 weight对于 DMatrix .这显然是一个权重列表,其中每个值都是相应样本的权重。 我找不到有关这些权重如何在梯度提升过程中实际使用的任何信息。他们是否与 e
不工作: import warnings warnings.filterwarnings('ignore') 我得到的警告: [14:24:45] WARNING: C:/Jenkins/worksp
我有一个用 Python 训练的 XGBoost 二元分类器模型。 我想在不同的脚本环境 (MQL4) 中使用纯数学运算而不使用 XGBoost 库 (.predict) 从该模型生成新输入数据的输出
我有一个仅包含分类特征和分类标签的数据模型。 因此,当我在 XGBoost 中手动构建该模型时,我基本上会将特征转换为二进制列(使用 LabelEncoder 和 OneHotEncoder),并使用
我使用 XGBoost 的 python 实现。目标之一是rank:pairwise并且最小化成对损失( Documentation )。但是,它没有说明输出的范围。我看到 -10 到 10 之间的数
我遇到了一个奇怪的问题: 我通过 hyperopt 定义了我的 XGB 超参数 'max_depth' hp.choice('max_depth',range(2,20)) 但我得到了 'max_de
我是 R 编程语言新手,我需要运行“xgboost”进行一些实验。问题是我需要交叉验证模型并获得准确性,我发现两种方法可以给我不同的结果: 使用“插入符号”: library(mlbench) lib
选择 auc、error 或 logloss 作为 XGBoost 的 eval_metric 对其性能有何影响?假设数据不平衡。它如何影响准确度、召回率和精确度? 最佳答案 在不同的评估矩阵 之间进
我是 Python 中 XGBoost 的新手,所以如果这里的答案很明显,我深表歉意,但我正在尝试使用 panda 数据框并在 Python 中获取 XGBoost 来给我使用 Scikit-Lear
我知道您可以为不平衡的数据集设置 scale_pos_weight。然而,如何处理不平衡数据集中的多分类问题。我经历过https://datascience.stackexchange.com/que
我正在使用 xgboost 的功能 pred_contribs 以便为我的模型的每个样本获得某种可解释性(shapley 值)。 booster.predict(test, pred_contribs
在 xgboost 0.81 中 cox ph 生存模型的新实现中,如何指定事件的开始和结束时间? 谢谢 例如,R 等效函数是: cph_mod = coxph(Surv(Start, Stop, S
我正在 R 中建模 claim 频率(泊松分布)。我正在使用 gbm和 xgboost包,但似乎xgboost没有将曝光考虑在内的偏移参数? 在 gbm ,人们会按如下方式考虑暴露: gbm.fit(
xgboost 包允许构建一个随机森林(实际上,它选择列的随机子集来为整棵树的 split 选择一个变量,而不是为了点头,因为它是算法的经典版本,但它可以忍受)。但是对于回归,似乎只使用了森林中的一棵
我是一名优秀的程序员,十分优秀!