gpt4 book ai didi

c++ - 统一共线边的网格简化算法

转载 作者:行者123 更新时间:2023-12-02 10:15:19 27 4
gpt4 key购买 nike

通过从下面的网格中删除红色标记的顶点(将一个顶点分成两个共线的边缘),并对受影响的面(在同一平面中)重新进行三角剖分,可以生成一个更简单的网格,表示完全相同的网格固体。

虽然用于短边折叠的算法非常普遍,但是我还找不到能够实现这种特定简化的任何东西。如果在CGAL或其他开源库中提供了实现,则可以加分。

enter image description here

最佳答案

首先,要测试两个相邻边是否共线,您需要确定是否可以允许舍入误差。 (假设您熟悉CGAL中的exact computation paradigm。)
第二个,如果您要进行无损抽取,则共线边缘可能不是一个好的指标。
共线边缘不能保证相应的面共面。
并且共面的面可能没有共线的边缘。
enter image description here
第三,每个边缘折叠操作都会产生成本。最常用的成本可能是二次误差,如Surface Simplification Using Quadric Error Metrics文件中所述。如果边缘折叠操作的成本为0,则表示该网格的形状未发生变化,而该误差度量标准则为零。
通过折叠所有成本为0的边,您可以获得想要的东西。
第四,在使边缘塌陷之后,您可能需要确定将新顶点放置在何处。至于无损抽取,您可以仅使用折叠边缘的端点之一。 (在this Stanford slides中称为半边折叠)。
enter image description here

CGAL不根据边缘崩溃成本提供停止谓词的实现(定义算法何时终止)。但是,实现一个很容易(这里我认为没有必要是精确的):

#include <iostream>
#include <fstream>

#include <CGAL/Simple_cartesian.h>
// #include <CGAL/Exact_predicates_inexact_constructions_kernel.h>
#include <CGAL/Surface_mesh.h>
#include <CGAL/Surface_mesh_simplification/edge_collapse.h>
// #include <CGAL/Surface_mesh_simplification/Policies/Edge_collapse/Count_ratio_stop_predicate.h>


// typedef CGAL::Exact_predicates_inexact_constructions_kernel Kernel;
typedef CGAL::Simple_cartesian<double> Kernel;
typedef Kernel::Point_3 Point_3;
typedef CGAL::Surface_mesh<Point_3> Surface_mesh;

namespace SMS = CGAL::Surface_mesh_simplification;


// Stops when the cost of an edge-collapse operation exceeds a user-specified value.
template<class TM_>
class Cost_stop_predicate
{
public:
typedef TM_ TM ;

public :
Cost_stop_predicate( double aThres ) : mThres(aThres) {}

template <typename F, typename Profile>
bool operator()( F const& aCurrentCost
, Profile const& // aEdgeProfile
, std::size_t // aInitialCount
, std::size_t // aCurrentCount
) const
{
return static_cast<double>(aCurrentCost) > mThres ;
}

private:
double mThres ;
};


int main( int argc, char** argv )
{
Surface_mesh surface_mesh;

std::ifstream is(argv[1]);
is >> surface_mesh;
if (!CGAL::is_triangle_mesh(surface_mesh)){
std::cerr << "Input geometry is not triangulated." << std::endl;
return EXIT_FAILURE;
}

// In this example, the simplification stops when
// the cost of an edge collapse execeeds 0.0000001
std::cout << surface_mesh.number_of_faces() << " faces.\n";
Cost_stop_predicate<Surface_mesh> stop(1e-10);

int r = SMS::edge_collapse(surface_mesh, stop);

std::cout << "\nFinished...\n" << r << " edges removed.\n"
<< surface_mesh.number_of_faces() << " final faces.\n";

std::ofstream os( argc > 2 ? argv[2] : "out.off" );
os.precision(17);
os << surface_mesh;

return EXIT_SUCCESS;
}
使用上述代码来无损简化四面体网格的结果:
(左:简化前,右:简化后)
enter image description here

还应注意,CGAL中实现的误差度量不是最常用的二次误差度量,而是 Lindstrom-Turk Cost,它具有更好的逼近度,如本文中所述: Fast and memory efficient polygonal simplification
上面的代码不使用半边折叠,而是使用常规边折叠。这意味着新顶点将放置在最小化Lindstorm-Turk成本的位置。对于您的情况,此放置策略不是必需的。如果要减少额外的计算量,则可以自己实现半边折叠,这也不复杂。我想我只会使用现成的实现:)
只是让您知道, vcglib还提供了网格抽取功能,包括此多合一 tridecimator

关于c++ - 统一共线边的网格简化算法,我们在Stack Overflow上找到一个类似的问题: https://stackoverflow.com/questions/62189124/

27 4 0
Copyright 2021 - 2024 cfsdn All Rights Reserved 蜀ICP备2022000587号
广告合作:1813099741@qq.com 6ren.com