- html - 出于某种原因,IE8 对我的 Sass 文件中继承的 html5 CSS 不友好?
- JMeter 在响应断言中使用 span 标签的问题
- html - 在 :hover and :active? 上具有不同效果的 CSS 动画
- html - 相对于居中的 html 内容固定的 CSS 重复背景?
(BEq a a0 = BTrue\/BEq a a0 = BFalse)
为 true 或 false,因为 a==a0
或 a!=a0
。但是,我不确定如何让 Coq 看到这一点。这是我完整的证明窗口:
4个子目标
a:aexp
a0:aexp
st : 状态
______________________________________(1/4)
(BEq a a0 = BTrue\/BEq a a0 = BFalse)\/
(存在 b' : bexp, BEq a a0/st ==>b b')
关于如何进行的任何建议?
定义:
Inductive bexp : Type :=
BTrue : bexp
| BFalse : bexp
| BEq : aexp -> aexp -> bexp
| BLe : aexp -> aexp -> bexp
| BNot : bexp -> bexp
| BAnd : bexp -> bexp -> bexp
.
Inductive aexp : Type :=
ANum : nat -> aexp
| AId : id -> aexp
| APlus : aexp -> aexp -> aexp
| AMinus : aexp -> aexp -> aexp
| AMult : aexp -> aexp -> aexp
.
Inductive bstep : state -> bexp -> bexp -> Prop :=
| BS_Eq : forall st n1 n2,
(BEq (ANum n1) (ANum n2)) / st ==>b
(if (beq_nat n1 n2) then BTrue else BFalse)
| BS_Eq1 : forall st a1 a1' a2,
a1 / st ==>a a1' ->
(BEq a1 a2) / st ==>b (BEq a1' a2)
| BS_Eq2 : forall st v1 a2 a2',
aval v1 ->
a2 / st ==>a a2' ->
(BEq v1 a2) / st ==>b (BEq v1 a2')
| BS_LtEq : forall st n1 n2,
(BLe (ANum n1) (ANum n2)) / st ==>b
(if (ble_nat n1 n2) then BTrue else BFalse)
| BS_LtEq1 : forall st a1 a1' a2,
a1 / st ==>a a1' ->
(BLe a1 a2) / st ==>b (BLe a1' a2)
| BS_LtEq2 : forall st v1 a2 a2',
aval v1 ->
a2 / st ==>a a2' ->
(BLe v1 a2) / st ==>b (BLe v1 (a2'))
| BS_NotTrue : forall st,
(BNot BTrue) / st ==>b BFalse
| BS_NotFalse : forall st,
(BNot BFalse) / st ==>b BTrue
| BS_NotStep : forall st b1 b1',
b1 / st ==>b b1' ->
(BNot b1) / st ==>b (BNot b1')
| BS_AndTrueTrue : forall st,
(BAnd BTrue BTrue) / st ==>b BTrue
| BS_AndTrueFalse : forall st,
(BAnd BTrue BFalse) / st ==>b BFalse
| BS_AndFalse : forall st b2,
(BAnd BFalse b2) / st ==>b BFalse
| BS_AndTrueStep : forall st b2 b2',
b2 / st ==>b b2' ->
(BAnd BTrue b2) / st ==>b (BAnd BTrue b2')
| BS_AndStep : forall st b1 b1' b2,
b1 / st ==>b b1' ->
(BAnd b1 b2) / st ==>b (BAnd b1' b2)
where " t '/' st '==>b' t' " := (bstep st t t').
最佳答案
我相当确定这是无法证明的。鉴于您的证明背景:
4 subgoal
a : aexp
a0 : aexp
st : state
______________________________________(1/4)
(BEq a a0 = BTrue \/ BEq a a0 = BFalse) \/
(exists b' : bexp, BEq a a0 / st ==>b b')
您需要能够证明至少一个析取。 BEq a a0 = BTrue
无法证明。 Beq
和 BTrue
是同一类型的两个不同构造函数,因此在 Coq 的相等性下,这永远不会成立。 BEq a a0 = BFalse
也是如此。事实上,我可以证明这些事情并不相等:
Theorem BeqBFalseNeq : forall a a0, BEq a a0 <> BFalse.
Proof.
intros a a0 contra. inversion contra.
Qed.
Theorem BeqBTrueNeq : forall a a0, BEq a a0 <> BTrue.
Proof.
intros a a0 contra. inversion contra.
Qed.
有人可能认为存在 b' : bexp, BEq a a0/st ==>b b'
可以通过归纳 a
然后解构 a0
。这将为您提供一堆案例,并且您需要证明对于每种情况您都可以采取步骤,但是,您将不可避免地发现自己处于无法证明可以采取步骤的情况。例如,如果 a
是 APlus (AId x) (ANum 12)
,而 a0
是其他任意表达式,那么您需要证明 BEq (APlus (AId x) (ANum 12)) a0
可以采取一步。您可能认为可以使用 BS_Eq1
规则,但是,您不能保证 APlus (AId x) (ANum 12)
可以在您的 下采取步骤==>a
关系,假设要使用id,它需要处于当前状态。如果 x
当前在给定状态下不存在,您将无法采取任何步骤。
关于coq - 在 Coq 中求解 (BEq a a0 = BTrue\/BEq a a0 = BFalse),我们在Stack Overflow上找到一个类似的问题: https://stackoverflow.com/questions/30633420/
我正在尝试理解 Coq 定理: Theorem thm0 : UseCl Pos (PredVP (UsePN john_PN) walk_V) -> UseCl Pos
编辑 Require Import Bool List ZArith. Variable A: Type. Inductive error := | Todo. Induc
我试图在 Coq 中证明以下引理: Lemma not_eq_S2: forall m n, S m <> S n -> m <> n. 这似乎很容易,但我不知道如何完成证明。有人可以帮帮我吗? 谢谢
我想查看我的证明中使用的所有公理。 获取此类信息的最简单方法是什么? 我将使用哪些命令、脚本或工具? 我对所有公理或所有使用过的公理感兴趣。 最佳答案 你应该使用 Print Assumptions
我想以某种方式限制在归纳定义中允许什么样的输入构造函数。说我想说定义二进制数如下: Inductive bin : Type := | O : bin | D : bin -> bin |
Coq 标准库中是否有对自然数进行欧几里德除法的函数?我一直无法找到一个。如果没有,那么从数学上讲,是否有理由不应该有一个? 我想要这个的原因是因为我试图将一个列表分成两个较小的列表。我希望一个列表的
我在将参数传递给 coq 中的产品类型时遇到问题。我有一个看起来像这样的定义, Definition bar (a:Type) := a->Type. 我需要定义一个函数,它接收“a”和“ba
这是本在线类(class)中出现的证明https://softwarefoundations.cis.upenn.edu/plf-current/StlcProp.html#lab222 . Proo
在命题和谓词演算中证明了数十个引理后(有些比其他的更具挑战性,但通常仍然可以在 intro-apply-destruct 自动驾驶仪上证明)我从 ~forall 开始打了一个并立即被捕获。显然,我缺乏
我正在学习命题逻辑和推理规则。析取三段论规则指出,如果我们的前提中有(P 或 Q),并且也有(非 P);然后我们可以到达Q。 我一生都无法弄清楚如何在 Coq 中做到这一点。假设我有: H : A \
从 Coq 引用手册 (8.5p1) 来看,我的印象是 revert是 intro 的倒数,但 generalize 也是如此在某种程度上。例如,revert和 generalize dependen
假设我知道某些自然数是好的。我知道 1 很好,如果 n 很好,那么 3n 就是,如果 n 很好,那么 n+5 就是,这些只是构造好数字的方法。在我看来,这在 Coq 中的充分形式化是 Inductiv
通常在 Coq 中,我发现自己在做以下事情:我有证明目标,例如: some_constructor a c d = some_constructor b c d 而我真的只需要证明a = b因为无论如
我希望能够为不同的归纳定义定义相同的 Coq 符号,并根据参数的类型区分这些符号。 这是一个最小的例子: Inductive type : Type := | TBool : type. Induct
有没有办法对 Coq 的类型类使用递归?例如,在为列表定义显示时,如果您想调用 show递归列表函数,那么你将不得不使用这样的固定点: Require Import Strings.String. R
假设我有一个解决某种引理的奇特策略: Ltac solveFancy := some_preparation; repeat (first [important_step1 | importa
我是 Coq 的新手。我注意到可以使用在 Coq 中定义空集 Inductive Empty_set : Set :=. 是否也可以将函数从空集定义为另一个通用集/类型? 如果是这样怎么办? 最佳答案
有人能给我一个 Coq 中存在实例化和存在泛化的简单例子吗?当我想证明exists x, P ,其中 P是一些 Prop使用 x ,我经常想命名x (如 x0 或类似的),并操纵 P。这可以是 Coq
我见过很多在功能上相互重叠的 Coq 策略。 例如,当您在假设中有确切的结论时,您可以使用 assumption , apply , exact , trivial ,也许还有其他人。其他示例包括 d
我需要使用标准库中称为 Coq.Arith.PeanoNat ( https://coq.inria.fr/library/Coq.Arith.PeanoNat.html ) 的部分。 我尝试过导入整
我是一名优秀的程序员,十分优秀!