- html - 出于某种原因,IE8 对我的 Sass 文件中继承的 html5 CSS 不友好?
- JMeter 在响应断言中使用 span 标签的问题
- html - 在 :hover and :active? 上具有不同效果的 CSS 动画
- html - 相对于居中的 html 内容固定的 CSS 重复背景?
我正在尝试在 Beam/Java 中编写一个数据流作业来处理来自 Pub/Sub 并写入 Parquet 的一系列事件。 Pub/Sub 中的事件采用 JSON 格式,每个事件可以生成一行或多行。我能够编写一个非常简单的示例,编写仅返回 1 条记录的 ParDo 转换。 ParDo 看起来像这样
static class GenerateRecords extends DoFn<String, GenericRecord> {
@ProcessElement
public void processElement(ProcessContext context) {
final GenericData.Record record = new GenericData.Record(schema);
String msg = context.element();
com.tsp.de.schema.mschema pRecord = GenerateParquetRecord(msg);
context.output(pRecord);
}
}
以及管道的写入部分
.apply("Write to file",
FileIO.<GenericRecord>
write()
.via(
ParquetIO.sink(schema)
.withCompressionCodec(CompressionCodecName.SNAPPY)
)
.to(options.getOutputDirectory())
.withNumShards(options.getNumShards())
.withSuffix("pfile")
);
我的问题是,如何概括此 ParDo 转换以返回记录列表?我尝试了 List,但不起作用,ParquetIO.sink(schema) 发出“无法通过以下方式解析方法”的警告。
最佳答案
您可以根据需要多次在 DoFn
中调用 context.output()
。因此,如果您知道在哪种情况下需要发出多条记录的业务逻辑,那么您只需为每个输出记录调用 context.output(record)
即可。它应该比拥有容器的 PCollection
更简单。
PS:顺便说一句,我有一个 simple example如何使用 ParquetIO
和 AvroCoder
编写 GenericRecord
可能会有所帮助。
关于java - 有没有办法在 Beam 的 ParDo 转换中创建 SpecificRecord 列表以写入 Parquet 文件?,我们在Stack Overflow上找到一个类似的问题: https://stackoverflow.com/questions/58721495/
是否可以对 parquet 格式执行分布式并发写入? 是否可以在写入拼花文件时读取它们? 如果有并发读/写的方法,我有兴趣了解。 提前感谢您的帮助。 最佳答案 我最终得到了 Parquet 开发人员的
如何从命令行检查 Parquet 文件的内容? 我现在看到的唯一选择是 $ hadoop fs -get my-path local-file $ parquet-tools head local-f
我正在使用基于 Java(1.8) 的应用程序使用库创建 Parquet 文件 org.apache.avro.Schema 和 org.apache.parquet.hadoop.ParquetWr
我已经使用 pyspark 创建了多个 parquet 文件,现在我正在尝试将所有 parquet 文件合并为 1 个。我能够合并这些文件,但是在读取生成的文件时,我遇到了错误。以前有人遇到过这个问题
我创建了一个数据框,如下所示: expanded_1 = pd.DataFrame({"Point": [random.choice(points) for x in range(30000000)]
当我在 R 和 Python 中保存 Parquet 文件(使用 pyarrow)时,我得到一个保存在元数据中的箭头模式字符串。 如何读取元数据?它是 Flatbuffer 编码数据吗?架构的定义在哪
例如,pandas 的 read_csv有一个 chunk_size允许 read_csv 的参数在 CSV 文件上返回一个迭代器,以便我们可以分块读取它。 Parquet 格式以块的形式存储数据,但
我正在尝试运行最新版本的 Parquet 工具,但遇到了一些问题。出于某种原因org.apache.hadoop.conf.Configuration不在阴影的 jar 里。 (我对 v1.6.0 也
我正在使用 Parquet 框架来编写 Parquet 文件。 我使用此构造函数创建了 Parquet 作家- public class ParquetBaseWriter extends Parqu
使用 spark 和钻头,我可以查询本地 Parquet 文件。 presto 是否提供相同的功能? 换句话说,是否可以使用 presto 查询本地 Parquet 文件 - 无需通过 HDFS 或
我有一个加密的 parquet 数据文件,它被读取为一个输入流。我想从此输入流中提取单个 Parquet 记录。有什么办法可以做到这一点吗?在 avro 中,使用 DatumReader 是可能的。我
我知道 Apache Arrow Parquet 可以读取符合规范的 Delta 编码文件,但不能将它们写出。我想知道是否有任何常用的开源 C++/Python 库可以写出符合 Parquet 规范的
背景: DuckDB 允许直接查询 parquet 文件。例如con.execute("从'Hierarchy.parquet'中选择 *) Parquet 允许按列值对文件进行分区。当一个 Parq
有没有办法将一个巨大的 parquet 文件分成较小的文件(使用 Python)?保留所有列并划分行?谢谢 最佳答案 你可以用 dask 来做. import dask.dataframe as dd
我的 Parquet 文件为 800K 行 x 8.7K 列。我将其加载到 dask 数据框中: import dask.dataframe as dd dask_train_df = dd.read
我有数百个用 PyArrow 创建的 Parquet 文件。然而,其中一些文件的字段/列的名称(我们称其为 Orange)与原始列(称其为 Sporange)略有不同,因为其中一个使用了查询的变体。否
我正在尝试在配置单元中创建 Parquet 表。我可以创建它,但是当我运行 analyze table mytable compute statistics 时;我得到这个结果: numfiles=8
我知道 hdfs 会将文件拆分成大约 64mb 的 block 。我们有流式传输的数据,我们可以将它们存储到大文件或中等大小的文件中。列式文件存储的最佳大小是多少?如果我可以将文件存储到最小列为 64
我想使用 Apache 的 parquet-mr 项目通过 Java 以编程方式读取/写入 Parquet 文件。我似乎找不到任何有关如何使用此 API 的文档(除了查看源代码并查看它的使用方式)——
我在 Impala 中移动数据,而不是我的设计,我丢失了一些数据。我需要将数据从 Parquet 表复制回它们原来的非 Parquet 表。最初,开发人员使用脚本中的一个简单的一行来完成此操作。由于我
我是一名优秀的程序员,十分优秀!