- html - 出于某种原因,IE8 对我的 Sass 文件中继承的 html5 CSS 不友好?
- JMeter 在响应断言中使用 span 标签的问题
- html - 在 :hover and :active? 上具有不同效果的 CSS 动画
- html - 相对于居中的 html 内容固定的 CSS 重复背景?
我的 Tensorflow 模型出现问题,决定尝试 Keras。至少在我看来,我正在使用相同的参数创建相同的模型,但 Tensorflow 模型仅输出 train_y 的平均值,而 Keras 模型实际上根据输入而变化。我在 tf.Session 中遗漏了什么吗?我平时用的是Tensorflow,从来没有遇到过这样的问题。 tensorflow 代码:
score_inputs = tf.placeholder(np.float32, shape=(None, 100))
targets = tf.placeholder(np.float32, shape=(None), name="targets")
l2 = tf.contrib.layers.l2_regularizer(0.01)
first_layer = tf.layers.dense(score_inputs, 100, activation=tf.nn.relu, kernel_regularizer=l2)
outputs = tf.layers.dense(first_layer, 1, activation = None, kernel_regularizer=l2)
optimizer = tf.train.AdamOptimizer(0.001)
l2_loss = tf.losses.get_regularization_loss()
loss = tf.reduce_mean(tf.square(tf.subtract(targets, outputs)))
loss += l2_loss
rmse = tf.sqrt(tf.reduce_mean(tf.square(outputs - targets)))
mae = tf.reduce_mean(tf.sqrt(tf.square(outputs - targets)))
training_op = optimizer.minimize(loss)
batch_size = 32
with tf.Session() as sess:
sess.run(tf.global_variables_initializer())
for epoch in range(10):
avg_train_error = []
for i in range(len(train_x) // batch_size):
batch_x = train_x[i*batch_size: (i+1)*batch_size]
batch_y = train_y[i*batch_size: (i+1)*batch_size]
_, train_loss = sess.run([training_op, loss], {score_inputs: batch_x, targets: batch_y})
feed = {score_inputs: test_x, targets: test_y}
test_loss, test_mae, test_rmse, test_ouputs = sess.run([loss, mae, rmse, outputs], feed)
平均绝对误差为 0.682,均方根误差为 0.891。
Keras 代码:
inputs = Input(shape=(100,))
hidden = Dense(100, activation="relu", kernel_regularizer = regularizers.l2(0.01))(inputs)
outputs = Dense(1, activation=None, kernel_regularizer = regularizers.l2(0.01))(hidden)
model = Model(inputs=inputs, outputs=outputs)
model.compile(optimizer=keras.optimizers.Adam(lr=0.001), loss='mse', metrics=['mae'])
model.fit(train_x, train_y, batch_size=32, epochs=10, shuffle=False)
keras_pred = model.predict(test_x)
平均绝对误差为 0.601,均方根误差为 0.753。
在我看来,我在这两个实例中定义了相同的网络,但正如我所说,Tensorflow 模型仅输出 train_y 的平均值,而 Keras 模型的性能要好得多。有什么建议吗?
最佳答案
我将尝试指出两个代码之间的差异。
Keras 文档 here显示权重由“glorot_uniform”初始化,而您的权重默认初始化,很可能是随机的,因为文档没有明确指定它是什么tensorflow intialization 。所以初始化很可能是不同的,而且它肯定是不同的很重要。
第二个差异很可能是因为输入数据类型的差异,一个是 numpy.float32,另一个是 keras 默认输入类型,文档也没有指定该类型
关于python - Tensorflow 模型的性能明显低于 Keras 模型,我们在Stack Overflow上找到一个类似的问题: https://stackoverflow.com/questions/56069411/
我想将模型及其各自训练的权重从 tensorflow.js 转换为标准 tensorflow,但无法弄清楚如何做到这一点,tensorflow.js 的文档对此没有任何说明 我有一个 manifest
我有一个运行良好的 TF 模型,它是用 Python 和 TFlearn 构建的。有没有办法在另一个系统上运行这个模型而不安装 Tensorflow?它已经经过预训练,所以我只需要通过它运行数据。 我
当执行 tensorflow_model_server 二进制文件时,它需要一个模型名称命令行参数,model_name。 如何在训练期间指定模型名称,以便在运行 tensorflow_model_s
我一直在 R 中使用标准包进行生存分析。我知道如何在 TensorFlow 中处理分类问题,例如逻辑回归,但我很难将其映射到生存分析问题。在某种程度上,您有两个输出向量而不是一个输出向量(time_t
Torch7 has a library for generating Gaussian Kernels在一个固定的支持。 Tensorflow 中有什么可比的吗?我看到 these distribu
在Keras中我们可以简单的添加回调,如下所示: self.model.fit(X_train,y_train,callbacks=[Custom_callback]) 回调在doc中定义,但我找不到
我正在寻找一种在 tensorflow 中有条件打印节点的方法,使用下面的示例代码行,其中每 10 个循环计数,它应该在控制台中打印一些东西。但这对我不起作用。谁能建议? 谢谢,哈米德雷萨, epsi
我想使用 tensorflow object detection API 创建我自己的 .tfrecord 文件,并将它们用于训练。该记录将是原始数据集的子集,因此模型将仅检测特定类别。我不明白也无法
我在 TensorFlow 中训练了一个聊天机器人,想保存模型以便使用 TensorFlow.js 将其部署到 Web。我有以下内容 checkpoint = "./chatbot_weights.c
我最近开始学习 Tensorflow,特别是我想使用卷积神经网络进行图像分类。我一直在看官方仓库中的android demo,特别是这个例子:https://github.com/tensorflow
我目前正在研究单图像超分辨率,并且我设法卡住了现有的检查点文件并将其转换为 tensorflow lite。但是,使用 .tflite 文件执行推理时,对一张图像进行上采样所需的时间至少是使用 .ck
我注意到 tensorflow 的 api 中已经有批量标准化函数。我不明白的一件事是如何更改训练和测试之间的程序? 批量归一化在测试和训练期间的作用不同。具体来说,在训练期间使用固定的均值和方差。
我创建了一个模型,该模型将 Mobilenet V2 应用于 Google colab 中的卷积基础层。然后我使用这个命令转换它: path_to_h5 = working_dir + '/Tenso
代码取自:- http://adventuresinmachinelearning.com/python-tensorflow-tutorial/ import tensorflow as tf fr
好了,所以我准备在Tensorflow中运行 tf.nn.softmax_cross_entropy_with_logits() 函数。 据我了解,“logit”应该是概率的张量,每个对应于某个像素的
tensorflow 服务构建依赖于大型 tensorflow ;但我已经成功构建了 tensorflow。所以我想用它。我做这些事情:我更改了 tensorflow 服务 WORKSPACE(org
Tensoflow 嵌入层 ( https://www.tensorflow.org/api_docs/python/tf/keras/layers/Embedding ) 易于使用, 并且有大量的文
我正在尝试使用非常大的数据集(比我的内存大得多)训练 Tensorflow 模型。 为了充分利用所有可用的训练数据,我正在考虑将它们分成几个小的“分片”,并一次在一个分片上进行训练。 经过一番研究,我
根据 Sutton 的书 - Reinforcement Learning: An Introduction,网络权重的更新方程为: 其中 et 是资格轨迹。 这类似于带有额外 et 的梯度下降更新。
如何根据条件选择执行图表的一部分? 我的网络有一部分只有在 feed_dict 中提供占位符值时才会执行.如果未提供该值,则采用备用路径。我该如何使用 tensorflow 来实现它? 以下是我的代码
我是一名优秀的程序员,十分优秀!