gpt4 book ai didi

Python OpenCV线条检测检测图像中的 `X`符号

转载 作者:行者123 更新时间:2023-12-02 08:25:02 24 4
gpt4 key购买 nike

我有一个图像,我需要检测行内的 X 符号。

图像:

enter image description here

正如您在上图中看到的,一行中有一个 X 符号。我想知道符号的 X 和 Y 坐标。有没有办法在这张图片中找到这个符号,还是它太小了?

import cv2
import numpy as np


def calculateCenterSpot(results):
startX, endX = results[0][0], results[0][2]
startY, endY = results[0][1], results[0][3]
centerSpotX = (endX - startX) / 2 + startX
centerSpotY = (endY - startY) / 2 + startY
return [centerSpotX, centerSpotY]

img = cv2.imread('crop_1.png')
res2 = img.copy()

cords = [[1278, 704, 1760, 1090]]
center = calculateCenterSpot(cords)
cv2.circle(img, (int(center[0]), int(center[1])), 1, (0,0,255), 30)
cv2.line(img, (int(center[0]), 0), (int(center[0]), img.shape[0]), (0,255,0), 10)
cv2.line(img, (0, int(center[1])), (img.shape[1], int(center[1])), (255,0,0), 10)
gray = cv2.cvtColor(img, cv2.COLOR_BGR2GRAY)

# You can either use threshold or Canny edge for HoughLines().
_, thresh = cv2.threshold(gray,0,255,cv2.THRESH_BINARY_INV+cv2.THRESH_OTSU)
#edges = cv2.Canny(gray, 50, 150, apertureSize=3)

# Perform HoughLines tranform.
lines = cv2.HoughLines(thresh,0.5,np.pi/180,1000)
for line in lines:
for rho,theta in line:
a = np.cos(theta)
b = np.sin(theta)
x0 = a*rho
y0 = b*rho
x1 = int(x0 + 5000*(-b))
y1 = int(y0 + 5000*(a))
x2 = int(x0 - 5000*(-b))
y2 = int(y0 - 5000*(a))
if x2 == int(center[0]):
cv2.circle(img, (x2,y1), 100, (0,0,255), 30)

if y2 == int(center[1]):
print('hell2o')
# cv2.line(res2,(x1,y1),(x2,y2),(0,0,255),2)

#Display the result.
cv2.imwrite('h_res1.png', img)
cv2.imwrite('h_res3.png', res2)

cv2.imwrite('image.png', img)

我已经尝试使用 HoughLines 做到这一点,但没有成功。

最佳答案

替代使用cv2.HoughLines(),另一种方法是使用 template matching 。这个想法是在更大的图像中搜索并找到模板图像的位置。为了执行此方法,模板会在输入图像上滑动(类似于 2D 卷积),在其中执行比较方法以确定像素相似性。这是模板匹配背后的基本思想。不幸的是,这种基本方法有缺陷,因为它仅当模板图像大小与输入图像中所需的项目相同时才有效。因此,如果您的模板图像小于在输入图像中查找的所需区域,则此方法将不起作用。

为了解决这个限制,我们可以使用np.linspace()动态地重新缩放图像以获得更好的模板匹配。在每次迭代中,我们都会调整输入图像的大小并跟踪比率。我们继续调整大小,直到模板图像大小大于调整大小的图像,同时跟踪最高相关值。相关值越高意味着匹配越好。一旦我们迭代了各种尺度,我们就会找到最大匹配的比率,然后计算边界框的坐标以确定投资返回率。

<小时/>

使用此屏幕截图模板图像

enter image description here

这是结果

enter image description here

import cv2
import numpy as np

# Resizes a image and maintains aspect ratio
def maintain_aspect_ratio_resize(image, width=None, height=None, inter=cv2.INTER_AREA):
# Grab the image size and initialize dimensions
dim = None
(h, w) = image.shape[:2]

# Return original image if no need to resize
if width is None and height is None:
return image

# We are resizing height if width is none
if width is None:
# Calculate the ratio of the height and construct the dimensions
r = height / float(h)
dim = (int(w * r), height)
# We are resizing width if height is none
else:
# Calculate the ratio of the 0idth and construct the dimensions
r = width / float(w)
dim = (width, int(h * r))

# Return the resized image
return cv2.resize(image, dim, interpolation=inter)

# Load template, convert to grayscale, perform canny edge detection
template = cv2.imread('template.png')
template = cv2.cvtColor(template, cv2.COLOR_BGR2GRAY)
template = cv2.Canny(template, 50, 200)
(tH, tW) = template.shape[:2]
cv2.imshow("template", template)

# Load original image, convert to grayscale
original_image = cv2.imread('1.png')
gray = cv2.cvtColor(original_image, cv2.COLOR_BGR2GRAY)
found = None

# Dynamically rescale image for better template matching
for scale in np.linspace(0.1, 3.0, 20)[::-1]:

# Resize image to scale and keep track of ratio
resized = maintain_aspect_ratio_resize(gray, width=int(gray.shape[1] * scale))
r = gray.shape[1] / float(resized.shape[1])

# Stop if template image size is larger than resized image
if resized.shape[0] < tH or resized.shape[1] < tW:
break

# Detect edges in resized image and apply template matching
canny = cv2.Canny(resized, 50, 200)
detected = cv2.matchTemplate(canny, template, cv2.TM_CCOEFF)
(_, max_val, _, max_loc) = cv2.minMaxLoc(detected)

# Uncomment this section for visualization
'''
clone = np.dstack([canny, canny, canny])
cv2.rectangle(clone, (max_loc[0], max_loc[1]), (max_loc[0] + tW, max_loc[1] + tH), (0,255,0), 2)
cv2.imshow('visualize', clone)
cv2.waitKey(0)
'''

# Keep track of correlation value
# Higher correlation means better match
if found is None or max_val > found[0]:
found = (max_val, max_loc, r)

# Compute coordinates of bounding box
(_, max_loc, r) = found
(start_x, start_y) = (int(max_loc[0] * r), int(max_loc[1] * r))
(end_x, end_y) = (int((max_loc[0] + tW) * r), int((max_loc[1] + tH) * r))

# Draw bounding box on ROI
cv2.rectangle(original_image, (start_x, start_y), (end_x, end_y), (0,255,0), 2)
cv2.imshow('detected', original_image)
cv2.imwrite('detected.png', original_image)
cv2.waitKey(0)

关于Python OpenCV线条检测检测图像中的 `X`符号,我们在Stack Overflow上找到一个类似的问题: https://stackoverflow.com/questions/58837175/

24 4 0
Copyright 2021 - 2024 cfsdn All Rights Reserved 蜀ICP备2022000587号
广告合作:1813099741@qq.com 6ren.com