gpt4 book ai didi

r - 剂量 react - 使用 R 进行全局曲线拟合

转载 作者:行者123 更新时间:2023-12-02 08:15:21 28 4
gpt4 key购买 nike

我有以下剂量 react 数据,并希望绘制剂量 react 模型和全局拟合曲线。 [xdata = 药物浓度; ydata(0-5) = 不同药物浓度下的响应值]。我毫无问题地绘制了标准曲线。

标准曲线数据拟合:

df <- data.frame(xdata = c(1000.00,300.00,100.00,30.00,10.00,3.00,1.00,0.30,
0.10,0.03,0.01,0.00),
ydata = c(91.8,95.3,100,123,203,620,1210,1520,1510,1520,1590,
1620))

nls.fit <- nls(ydata ~ (ymax*xdata / (ec50 + xdata)) + Ns*xdata + ymin, data=df,
start=list(ymax=1624.75, ymin = 91.85, ec50 = 3, Ns = 0.2045514))

剂量 react 曲线数据拟合:

df <- data.frame(
xdata = c(10000,5000,2500,1250,625,312.5,156.25,78.125,39.063,19.531,9.766,4.883,
2.441,1.221,0.610,0.305,0.153,0.076,0.038,0.019,0.010,0.005),
ydata1 = c(97.147, 98.438, 96.471, 73.669, 60.942, 45.106, 1.260, 18.336, 9.951, 2.060,
0.192, 0.492, -0.310, 0.591, 0.789, 0.075, 0.474, 0.278, 0.399, 0.217, 1.021, -1.263),
ydata2 = c(116.127, 124.104, 110.091, 111.819, 118.274, 78.069, 52.807, 40.182, 26.862,
15.464, 6.865, 3.385, 10.621, 0.299, 0.883, 0.717, 1.283, 0.555, 0.454, 1.192, 0.155, 1.245),
ydata3 = c(108.410, 127.637, 96.471, 124.903, 136.536, 104.696, 74.890, 50.699, 47.494, 23.866,
20.057, 10.434, 2.831, 2.261, 1.085, 0.399, 1.284, 0.045, 0.376, -0.157, 1.158, 0.281),
ydata4 = c(107.281, 118.274, 99.051, 99.493, 104.019, 99.582, 87.462, 75.322, 47.393, 42.459,
8.311, 23.155, 3.268, 5.494, 2.097, 2.757, 1.438, 0.655, 0.782, 1.128, 1.323, 0.645),
ydata0 = c(109.455, 104.989, 101.665, 101.205, 108.410, 101.573, 119.375, 101.757, 65.660, 35.672,
31.613, 12.323, 25.515, 17.283, 7.170, 2.771, 2.655, 0.491, 0.290, 0.535, 0.298, 0.106))

当我尝试使用下面提供的 R 脚本获取拟合参数时,出现以下错误:

nls(ydata1 ~ BOTTOM + (TOP - BOTTOM)/(1 + 10^((logEC50 - xdata) * :
奇异梯度

nls.fit1 <- nls(ydata1 ~ BOTTOM + (TOP-BOTTOM)/(1+10**((logEC50-xdata)*hillSlope)), data=df,
start=list(TOP = max(df$ydata1), BOTTOM = min(df$ydata1),hillSlope = 1.0, logEC50 = 4.310345e-08))

nls.fit2 <- nls(ydata2 ~ BOTTOM + (TOP-BOTTOM)/(1+10**((logEC50-xdata)*hillSlope)), data=df,
start=list(TOP = max(df$ydata2), BOTTOM = min(df$ydata2),hillSlope = 1.0, logEC50 = 4.310345e-08))

nls.fit3 <- nls(ydata3 ~ BOTTOM + (TOP-BOTTOM)/(1+10**((logEC50-xdata)*hillSlope)), data=df,
start=list(TOP = max(df$ydata3), BOTTOM = min(df$ydata3),hillSlope = 1.0, logEC50 = 4.310345e-08))

nls.fit4 <- nls(ydata4 ~ BOTTOM + (TOP-BOTTOM)/(1+10**((logEC50-xdata)*hillSlope)), data=df,
start=list(TOP = max(df$ydata4), BOTTOM = min(df$ydata4),hillSlope = 1.0, logEC50 = 4.310345e-08))

nls.fit5 <- nls(ydata0 ~ BOTTOM + (TOP-BOTTOM)/(1+10**((logEC50-xdata)*hillSlope)), data=df,
start=list(TOP = max(df$ydata0), BOTTOM = min(df$ydata0),hillSlope = 1.0, logEC50 = 4.310345e-08))

请教我如何解决这个问题

最佳答案

首先请注意,xdata 的最大值与最小值之比为 200 万,因此我们可能希望使用 log(xdata) 代替 扩展数据

现在,进行此更改后,我们将获得 drc package 的 4 参数对数逻辑 LL2.4 模型但与问题中的参数化略有不同。假设您可以接受这些更改,我们可以按如下方式拟合第一个模型。参见 ?LL2.4有关参数化的详细信息,请参阅 ?ryegrass 底部的相关示例.这里的 df 是问题中显示的 df —— LL2.4 模型本身进行了 log(xdata) 转换。

library(drc)

fm1 <- drm(ydata1 ~ xdata, data = df, fct = LL2.4())
fm1
plot(fm1)

这里我们拟合了所有 5 个模型,从最后的图中我们可以看出拟合非常好。

library(drc)

fun <- function(yname) {
fo <- as.formula(paste(yname, "~ xdata"))
fit <- do.call("drm", list(fo, data = quote(df), fct = quote(LL2.4())))
plot(fit)
fit
}

par(mfrow = c(3, 2))
L <- Map(fun, names(df)[-1])
par(mfrow = c(1, 1))

sapply(L, coef)

给予:

                     ydata1   ydata2   ydata3   ydata4   ydata0
b:(Intercept) -1.37395 -1.1411 -1.1337 -1.0633 -1.6525
c:(Intercept) 0.70388 1.9364 1.5800 1.3751 5.7010
d:(Intercept) 101.02741 122.0825 120.8042 108.2420 107.9106
e:(Intercept) 6.17225 5.0686 4.3215 3.7139 3.2813

和以下图形配合(单击图像将其展开):

screenshot

关于r - 剂量 react - 使用 R 进行全局曲线拟合,我们在Stack Overflow上找到一个类似的问题: https://stackoverflow.com/questions/42465934/

28 4 0
Copyright 2021 - 2024 cfsdn All Rights Reserved 蜀ICP备2022000587号
广告合作:1813099741@qq.com 6ren.com