gpt4 book ai didi

r - 在 data.table 中使用多个键来获得条件搜索

转载 作者:行者123 更新时间:2023-12-02 08:09:21 24 4
gpt4 key购买 nike

我有一个 data.table首先,我想根据某些条件获得一个子集,例如,我有

library(data.table)
dt <- data.table(rn=1:10, B=rep(1:2, 5))
dt
# rn B
# 1: 1 1
# 2: 2 2
# 3: 3 1
# 4: 4 2
# 5: 5 1
# 6: 6 2
# 7: 7 1
# 8: 8 2
# 9: 9 1
#10: 10 2`

我知道第一列的名称,但我事先不知道第二列的名称,而是存储在字符向量中: nameAsVect <- "B"

假设我想获得以下内容:

dt[rn>5 & B==2, ]
# rn B
#1: 6 2
#2: 8 2
#3: 10 2`

我以为我可以做到:

setkeyv(dt, c("rn", nameAsVect))
max.count <- max(dt[, nameAsVect, with=FALSE])
dt[J(5:max(rn), max.count), ]
# rn B
#1: 5 2
#2: 6 2
#3: 7 2
#4: 8 2
#5: 9 2
#6: 10 2

但我无法理解为什么 rn 列中的值 5、7 和 9被包含在内。我可以通过以下方式获得我想要的:dt[rn>=5 & get(nameAsVect) == max.count]但我认为第一种方法如果可行的话,对于大表会更快。

有什么见解吗?

谢谢

最佳答案

OP 的方法有一些替代方案,不需要预先设置 key

向量扫描 & get()

dt[rn >= 5 & get(nameAsVect) == max(get(nameAsVect))]
   rn B
1: 6 2
2: 8 2
3: 10 2

向量扫描 & eval(parse())

Matt Dowle 在 his answer to Select / assign to data.table variables which names are stored in a character vector 中建议的另一种方法:

eval(parse(text = sprintf("dt[rn >= 5 & %s == max(%s)]", nameAsVect, nameAsVect)))
   rn B
1: 6 2
2: 8 2
3: 10 2

非相等连接

随着版本 v1.9.8(2016 年 11 月 25 日在 CRAN 上),data.table 获得了执行非等值连接的能力。

max.count <- dt[, max(get(nameAsVect))] 
dt[dt[.(5, max.count), on = c("rn>=V1", paste0(nameAsVect, "==V2")), which = TRUE]]
   rn B
1: 6 2
2: 8 2
3: 10 2

或者(我喜欢的方式)

mdt <- dt[, c(.(rn = 5), lapply(.SD, max)), .SDcols = nameAsVect] 
dt[dt[mdt, on = c("rn>=rn", nameAsVect), which = TRUE]]
   rn B
1: 6 2
2: 8 2
3: 10 2

基准

创建基准数据:

n_row <- 1e6L
set.seed(123L)
DT <- data.table(
rn = sample(1:10, n_row, TRUE),
B = sample(1:2, n_row, TRUE)
)

运行基准测试:

library(microbenchmark)
bm <- microbenchmark(
vec_scan_hard_coded = {
dt <- copy(DT)
dt[rn >= 5L & B == 2L]
},
OP_keyed = {
dt <- copy(DT)
setkeyv(dt, c("rn", nameAsVect))
max.count <- max(dt[, nameAsVect, with=FALSE])
dt[J(5:max(rn), max.count), nomatch = 0L]
},
vec_scan_get = {
dt <- copy(DT)
dt[rn >= 5 & get(nameAsVect) == max(get(nameAsVect))]
},
vec_scan_eval_parse = {
dt <- copy(DT)
eval(parse(text = sprintf("dt[rn >= 5 & %s == max(%s)]", nameAsVect, nameAsVect)))
},
nej1 = {
dt <- copy(DT)
max.count <- dt[, max(get(nameAsVect))]
dt[dt[.(5, max.count), on = c("rn>=V1", paste0(nameAsVect, "==V2")), which = TRUE]]
},
nej1_keyed = {
dt <- copy(DT)
setkeyv(dt, c("rn", nameAsVect))
max.count <- dt[, max(get(nameAsVect))]
dt[dt[.(5, max.count), on = c("rn>=V1", paste0(nameAsVect, "==V2")), which = TRUE]]
},
nej2 = {
dt <- copy(DT)
mdt <- dt[, c(.(rn = 5), lapply(.SD, max)), .SDcols = nameAsVect]
dt[dt[mdt, on = c("rn>=rn", nameAsVect), which = TRUE]]
},
nej2_keyed = {
dt <- copy(DT)
setkeyv(dt, c("rn", nameAsVect))
mdt <- dt[, c(.(rn = 5), lapply(.SD, max)), .SDcols = nameAsVect]
dt[dt[mdt, on = c("rn>=rn", nameAsVect), which = TRUE]]
},
times = 100L
)
print(bm)

对于 1 M 行和大约 300 k 行的结果集,向量扫描方法是最快的:

Unit: milliseconds
expr min lq mean median uq max neval cld
vec_scan_hard_coded 19.03159 20.86890 42.70820 24.38040 27.57417 219.5682 100 a
OP_keyed 31.49025 34.50825 52.46168 37.74204 40.84953 194.7676 100 a
vec_scan_get 20.60384 25.75461 46.37579 27.29287 29.55892 185.5867 100 a
vec_scan_eval_parse 20.81188 23.92598 36.81940 26.69742 29.27687 183.5323 100 a
nej1 53.85361 59.32608 85.32623 62.12509 65.15083 227.1221 100 b
nej1_keyed 52.89946 58.37457 77.38969 61.03312 64.32072 221.3292 100 b
nej2 53.25590 59.69762 88.92513 61.98481 65.05738 285.2495 100 b
nej2_keyed 53.25061 58.61453 81.22925 61.14885 63.56159 274.0207 100 b

关于r - 在 data.table 中使用多个键来获得条件搜索,我们在Stack Overflow上找到一个类似的问题: https://stackoverflow.com/questions/48573318/

24 4 0
Copyright 2021 - 2024 cfsdn All Rights Reserved 蜀ICP备2022000587号
广告合作:1813099741@qq.com 6ren.com