- html - 出于某种原因,IE8 对我的 Sass 文件中继承的 html5 CSS 不友好?
- JMeter 在响应断言中使用 span 标签的问题
- html - 在 :hover and :active? 上具有不同效果的 CSS 动画
- html - 相对于居中的 html 内容固定的 CSS 重复背景?
我来自 R 背景,习惯于在后端处理分类变量(作为因子)。对于 Sparklyr,使用 string_indexer
或 onehotencoder
非常令人困惑。
library(sparklyr)
library(dplyr)
sessionInfo()
sc <- spark_connect(master = "local", version = spark_version)
spark_version(sc)
set.seed(1)
exampleDF <- data.frame (ID = 1:10, Resp = sample(c(100:205), 10, replace = TRUE),
Numb = sample(1:10, 10))
example <- copy_to(sc, exampleDF)
pred <- example %>% mutate(Resp = as.character(Resp)) %>%
sdf_mutate(Resp_cat = ft_string_indexer(Resp)) %>%
ml_decision_tree(response = "Resp_cat", features = "Numb") %>%
sdf_predict()
pred
模型的预测不是分类的。见下文。这是否意味着我还必须从预测转换回 Resp_cat,然后再转换回 Resp?
R version 3.4.0 (2017-04-21)
Platform: x86_64-redhat-linux-gnu (64-bit)
Running under: CentOS Linux 7 (Core)
spark_version(sc)
[1] ‘2.1.1.2.6.1.0’
Source: table<sparklyr_tmp_74e340c5607c> [?? x 6]
Database: spark_connection
ID Numb Resp Resp_cat id74e35c6b2dbb prediction
<int> <int> <chr> <dbl> <dbl> <dbl>
1 1 10 150 8 0 8.000000
2 2 3 191 4 1 4.000000
3 3 4 146 9 2 9.000000
4 4 9 125 5 3 5.000000
5 5 8 107 2 4 2.000000
6 6 2 110 1 5 1.000000
7 7 5 133 3 6 5.333333
8 8 7 154 6 7 5.333333
9 9 1 170 0 8 0.000000
10 10 6 143 7 9 5.333333
最佳答案
一般来说,Spark 在处理分类数据时依赖于列元数据。在您的管道中,这是由 StringIndexer
(ft_string_indexer
) 处理的。机器学习总是预测标签,而不是原始字符串。通常您会使用由 ft_index_to_string
提供的 IndexToString
转换器。
在 Spark IndexToString
中可以使用 a provided list of labels或Column
元数据。不幸的是 sparklyr
的实现在两个方面受到限制:
ft_string_indexer
丢弃经过训练的模型,因此它不能用于提取标签。我可能错过了一些东西,但看起来您必须手动映射预测,例如通过加入
与转换后的数据:
pred %>%
select(prediction=Resp_cat, Resp_prediction=Resp) %>%
distinct() %>%
right_join(pred)
Joining, by = "prediction"
# Source: lazy query [?? x 9]
# Database: spark_connection
prediction Resp_prediction ID Numb Resp Resp_cat id777a79821e1e
<dbl> <chr> <int> <int> <chr> <dbl> <dbl>
1 7 171 1 3 171 7 0
2 0 153 2 10 153 0 1
3 3 132 3 8 132 3 2
4 5 122 4 7 122 5 3
5 6 198 5 4 198 6 4
6 2 164 6 9 164 2 5
7 4 137 7 6 137 4 6
8 1 184 8 5 184 1 7
9 0 153 9 1 153 0 8
10 1 184 10 2 184 1 9
# ... with more rows, and 2 more variables: rawPrediction <list>,
# probability <list>
说明:
pred %>%
select(prediction=Resp_cat, Resp_prediction=Resp) %>%
distinct()
创建从预测(编码标签)到原始标签的映射。我们将 Resp_cat
重命名为 prediction
,以便它可以用作连接键,并将 Resp
重命名为 Resp_prediction
以避免与实际的Resp
。
最后我们应用右等值连接:
... %>% right_join(pred)
注意:
您应该指定树的类型:
ml_decision_tree(
response = "Resp_cat", features = "Numb",type = "classification")
关于r - Sparklyr 处理分类变量,我们在Stack Overflow上找到一个类似的问题: https://stackoverflow.com/questions/45678282/
我正在尝试使用 Pandas 和 scikit-learn 在 Python 中执行分类。我的数据集包含文本变量、数值变量和分类变量的混合。 假设我的数据集如下所示: Project Cost
我想要一种图形化且有吸引力的方式来表示二进制数据的列总和,而不是表格格式。我似乎无法让它发挥作用,尽管有人会认为这将是一次上篮。 数据看起来像这样(我尝试创建一个可重现的示例,但无法让代码填充 0 和
我有一个简单的类别模型: class Category(models.Model): name = models.CharField(max_length=200) slug = mo
我正在开发一个知识系统,当用户进入一道菜时,该系统可以返回酒。我的想法是根据用户的输入为每个葡萄酒类别添加分数,然后显示最适合的葡萄酒类别的前 3 个。例如,如果有人输入鱼,那么知识库中的所有红葡萄酒
我目前正在研究流失问题的预测模型。 每当我尝试运行以下模型时,都会收到此错误:至少一个类级别不是有效的 R 变量名称。这将在生成类概率时导致错误,因为变量名称将转换为 X0、X1。请使用可用作有效 R
如何对栅格重新分类(子集)r1 (与 r2 具有相同的尺寸和范围)基于 r2 中的以下条件在给定的示例中。 条件: 如果网格单元格值为 r2是 >0.5 ,保留>0.5中对应的值以及紧邻0.5个值的相
我想知道在 java 中进行以下分类的最佳方法是什么。例如,我们有一个简单的应用程序,其分类如下: 空气 -----电机类型 -----------平面对象 -----非电机型 -----------
这是一个非常基本的示例。但我正在做一些数据分析,并且不断发现自己编写非常类似的 SQL 计数查询来生成概率表。 我的表被定义为值 0 表示事件未发生,而值 1 表示事件确实发生。 > sqldf(
假设我有一组护照图像。我正在开展一个项目,我必须识别每本护照上的姓名,并最终将该对象转换为文本。 对于标签(或分类(我认为是初学者))的第一部分,每本护照上都有姓名,我该怎么做? 我可以使用哪些技术/
我有这张图片: 我想做的是在花和树之间对这张图片进行分类,这样我就可以找到图片中被树木覆盖的区域,以及被那些花覆盖的区域。 我在想这可能是某种 FFT 问题,但我不确定它是如何工作的。单个花的 FFT
我的数据集有 32 个分类变量和一个数值连续变量(sales_volume) 首先,我使用单热编码 (pd.get_dummies) 将分类变量转换为二进制,现在我有 1294 列,因为每一列都有多个
我正在尝试学习一些神经网络来获得乐趣。我决定尝试从 kaggle 的数据集中对一些神奇宝贝传奇卡进行分类。我阅读了文档并遵循了机器学习掌握指南,同时阅读了媒体以尝试理解该过程。 我的问题/疑问:我尝试
我目前正在进行推文情绪分析,并且有几个关于步骤的正确顺序的问题。请假设数据已经过相应的预处理和准备。所以这就是我将如何进行: 使用 train_test_split(80:20 比例)停止测试数据集。
一些上下文:Working with text classification and big sparse matrices in R 我一直在研究 text2vec 的文本多类分类问题。包装和 ca
数据 我有以下(简化的)数据集,我们称之为 df从现在开始: species rank value 1
我一直在尝试创建一个 RNN。我总共有一个包含 1661 个单独“条目”的数据集,每个条目中有 158 个时间序列坐标。 以下是一个条目的一小部分: 0.00000000e+00 1.9260968
我有一个关于机器学习的分类和回归问题。第一个问题,以下数据集 http://it.tinypic.com/view.php?pic=oh3gj7&s=8#.VIjhRDGG_lF 我们可以说,数据集是
我用1~200个数据作为训练数据,201~220个作为测试数据格式如下:3 个类(类 1、类 2、类 3)和 20 个特征 2 1:100 2:96 3:88 4:94 5:96 6:94 7:72
我有 2 个基于多个数字特征(例如 v1….v20)的输出类别(好和差)。 如果 v1、v2、v3 和 v4 为“高”,则该类别为“差”。如果 v1、v2、v3 和 v4 为“低”,则该类别为“好”
我遇到了使用朴素贝叶斯将文档分类为各种类别问题的问题。 实际上我想知道 P(C) 或我们最初掌握的类别的先验概率会随着时间的推移而不断变化。例如,对于类(class) - [音乐、体育、新闻] 初始概
我是一名优秀的程序员,十分优秀!