gpt4 book ai didi

r - 根据每组的另一个查找表有条件地为一个数据框插入值?

转载 作者:行者123 更新时间:2023-12-02 08:00:33 25 4
gpt4 key购买 nike

这类似于以下question .但是,我需要再执行几个步骤:

• 按列IDorder 分组

• 对于df_dat 中的每个val,在df_lookup 表中查找对应的ratio,如下所示条件:

o   If val < min(df_lookup$val), set new_ratio = min(df_lookup$ratio)

o If val > max(df_lookup$val), set new_ratio = max(df_lookup$ratio)

o If val falls within df_lookup$val range, do a simple linear interpolation

我的数据:

library(dplyr)

df_lookup <- tribble(
~ID, ~order, ~pct, ~val, ~ratio,
"batch1", 1, 1, 1, 0.2,
"batch1", 1, 10, 8, 0.5,
"batch1", 1, 25, 25, 1.2,
"batch2", 2, 1, 2, 0.1,
"batch2", 2, 10, 15, 0.75,
"batch2", 2, 25, 33, 1.5,
"batch2", 2, 50, 55, 3.2,
)
df_lookup
#> # A tibble: 7 x 5
#> ID order pct val ratio
#> <chr> <dbl> <dbl> <dbl> <dbl>
#> 1 batch1 1 1 1 0.2
#> 2 batch1 1 10 8 0.5
#> 3 batch1 1 25 25 1.2
#> 4 batch2 2 1 2 0.1
#> 5 batch2 2 10 15 0.75
#> 6 batch2 2 25 33 1.5
#> 7 batch2 2 50 55 3.2


df_dat <- tribble(
~order, ~ID, ~val,
1, "batch1", 0.1,
1, "batch1", 30,
1, "batch1", 2,
1, "batch1", 12,
2, "batch1", 45,
2, "batch2", 1.5,
2, "batch2", 30,
2, "batch2", 13,
2, "batch2", 60,
)
df_dat
#> # A tibble: 9 x 3
#> order ID val
#> <dbl> <chr> <dbl>
#> 1 1 batch1 0.1
#> 2 1 batch1 30
#> 3 1 batch1 2
#> 4 1 batch1 12
#> 5 2 batch1 45
#> 6 2 batch2 1.5
#> 7 2 batch2 30
#> 8 2 batch2 13
#> 9 2 batch2 60

以前的解决方案不尊重产生错误结果的分组。

示例:

对于 order = 2ID = batch1new_ratio 应该是 NA,因为这些条件不在查找表中。

对于 order = 1ID = batch2val = 30new_ratio 不应高于1.2(最大比率值)。

对于 order = 1ID = batch1val = 2new_ratio = 0.243 这是在 0.2 和 0.5 之间插入 ratio 值。

感谢任何帮助!

#error
df_dat %>%
group_by(ID, order) %>%
mutate(new_ratio = with(df_lookup, approx(val, ratio, val))$y)
#> Error: Column `new_ratio` must be length 4 (the group size) or one, not 7

#wrong output
df_dat %>%
group_by(ID, order) %>%
mutate(val1 = val) %>%
mutate(new_ratio = with(df_lookup, approx(val, ratio, val1))$y)
#> # A tibble: 9 x 5
#> # Groups: ID, order [3]
#> order ID val val1 new_ratio
#> <dbl> <chr> <dbl> <dbl> <dbl>
#> 1 1 batch1 0.1 0.1 NA
#> 2 1 batch1 30 30 1.39
#> 3 1 batch1 2 2 0.1
#> 4 1 batch1 12 12 0.643
#> 5 2 batch1 45 45 2.43
#> 6 2 batch2 1.5 1.5 0.15
#> 7 2 batch2 30 30 1.39
#> 8 2 batch2 13 13 0.679
#> 9 2 batch2 60 60 NA

预期输出

# A tibble: 9 x 4
order ID val new_ratio
<dbl> <chr> <dbl> <dbl>
1 1 batch1 0.1 0.2
2 1 batch1 30 1.2
3 1 batch1 2 0.243
4 1 batch1 12 0.643
5 2 batch1 45 NA
6 2 batch2 1.5 0.1
7 2 batch2 30 1.38
8 2 batch2 13 0.65
9 2 batch2 60 3.2

最佳答案

这是我解决你的问题的方法,使用 data.table

我用了很多中间步骤,所以你可以检查结果和操作每个步骤,看看发生了什么/所以代码可以缩短很多。

library(data.table)

#set data to data.tables
setDT(df_dat); setDT(df_lookup)

#set range df_lookup values by ID and order combination
df_lookup[, `:=`( val2 = shift( val, type = "lead" ),
ratio2 = shift( ratio, type = "lead" ) ),
by = .( ID, order ) ][]

#join non-equi
df_dat[ df_lookup,
`:=`( val_start = i.val,
val_end = i.val2,
ratio_start = i.ratio,
ratio_end = i.ratio2 ),
on = .( ID, order, val > val, val < val2) ][]


#interpolatie new_ratio for values that fall within a range of dt_lookup
df_dat[, new_ratio := ratio_start + ( (val - val_start) * (ratio_end - ratio_start) / (val_end - val_start) )][]

#create data.table with ratio-value for minimum- and maximum value in df_lookup
df_lookup_min_max <- df_lookup[, .( val_min = min( val ), val_max = max( val ),
ratio_min = min( ratio ), ratio_max = max( ratio ) ),
by = .(ID, order) ]
df_lookup_min_max_melt <- melt( df_lookup_min_max,
id.vars = c( "ID", "order" ),
measure.vars = patterns( val = "^val",
ratio = "^ratio" ) )

df_dat[ is.na( new_ratio ),
new_ratio := df_lookup_min_max_melt[ df_dat[ is.na( new_ratio ), ],
ratio,
on = .(ID, order, val ),
roll = "nearest" ] ][]

df_dat[, `:=`(val_start = NULL, val_end = NULL, ratio_start = NULL, ratio_end = NULL)][]

最终输出

#    order     ID  val new_ratio
# 1: 1 batch1 0.1 0.2000000
# 2: 1 batch1 30.0 1.2000000
# 3: 1 batch1 2.0 0.2428571
# 4: 1 batch1 12.0 0.6647059
# 5: 2 batch1 45.0 NA
# 6: 2 batch2 1.5 0.1000000
# 7: 2 batch2 30.0 1.3750000
# 8: 2 batch2 13.0 0.6500000
# 9: 2 batch2 60.0 3.2000000

编辑

5: 2 batch1 45.0 NA 在这里是因为 df_lookup 中没有 order == 2 & ID == batch1 组合...
也许这是一个错字?
尽管如此:代码似乎处理得很好 ;-)

关于r - 根据每组的另一个查找表有条件地为一个数据框插入值?,我们在Stack Overflow上找到一个类似的问题: https://stackoverflow.com/questions/58092830/

25 4 0
Copyright 2021 - 2024 cfsdn All Rights Reserved 蜀ICP备2022000587号
广告合作:1813099741@qq.com 6ren.com