gpt4 book ai didi

c - 我想优化这个程序

转载 作者:行者123 更新时间:2023-12-02 07:59:37 27 4
gpt4 key购买 nike

我最近开始学习 c,作为编程练习,我编写了一个程序,用于计算并列出从 0 到用户输入的最大值的素数。这是一个相当短的程序,所以我将在此处发布源代码。

// playground.c
#include <stdio.h>
#include <stdbool.h>
#include <math.h>

int main ()
{
int max;
printf("Please enter the maximum number up to which you would like to see all primes listed: "
); scanf("%i", &max);

printf("All prime numbers in the range 0 to %i:\nPrime number: 2\n", max);


bool isComposite;
int primesSoFar[(max >> 1) + 1];
primesSoFar[0] = 2;
int nextIdx = 1;

for (int i = 2; i <= max; i++)
{
isComposite = false;
for (int k = 2; k <= (int)sqrt(i) + 1; k++)
{
if (k - 2 < nextIdx)
{
if (i % primesSoFar[k - 2] == 0)
{
isComposite = true;
k = primesSoFar[k - 2];
}
}else
{
if (i % k == 0) isComposite = true;
}

}
if (!isComposite)
{
printf("Prime number: %i\n", i);
primesSoFar[nextIdx] = i;
nextIdx++;

}

}

double primeRatio = (double)(nextIdx + 1) / (double)(max);
printf("The ratio of prime numbers to composites in range 0 to %d is %lf", max, primeRatio);

return 0;
}

我对优化这个程序产生了奇怪的兴趣,但我遇到了困难。数组 primesSoFar 是根据计算出的最大大小进行分配的,理想情况下该大小不大于从 0 到 max 的素数数量。哪怕再大一点也好;只要不是更小。有没有一种方法可以计算数组所需的大小,而不依赖于首先计算最大素数?

我已经更新了代码,应用了建议的优化,并在看起来有用的地方添加了内部文档。

// can compute all the primes up to 0x3FE977 (4_188_535). Largest prime 4_188_533

#include <stdio.h>
#include <stdbool.h>
#include <math.h>

int main ()
{
int max;
printf("Please enter the maximum number up to which you would like to see all primes listed: "
); scanf("%i", &max);

// The algorithm proper doesn't print 2.
printf("All prime numbers in the range 0 to %i:\nPrime number: 2\n", max);


bool isComposite;
// primesSoFar is a memory hog. It'd be nice to reduce its size in proportion to max. The frequency
// of primes diminishes at higher numerical ranges. A formula for calculating the number of primes for
// a given numerical range would be nice. Sadly, it's not linear.
int PRIMES_MAX_SIZE = (max >> 1) + 1;
int primesSoFar[PRIMES_MAX_SIZE];
primesSoFar[0] = 2;
int nextIdx = 1;
int startConsecCount = 0;

for (int i = 2; i <= max; i++)
{
isComposite = false; // Assume the current number isn't composite.
for (int k = 2; k <= (int)sqrt(i) + 1; k++)
{
if (k - 2 < nextIdx) // Check it against all primes found so far.
{
if (i % primesSoFar[k - 2] == 0)
{
// If i is divisible by a previous prime number, break.
isComposite = true;
break;
}else
{
// Prepare to start counting consecutive integers at the largest prime + 1. if i
// isn't divisible by any of the primes found so far.
startConsecCount = primesSoFar[k - 2] + 1;
}
}else
{
if (startConsecCount != 0) // Begin counting consecutively at the largest prime + 1.
{
k = startConsecCount;
startConsecCount = 0;
}

if (i % k == 0)
{
// If i is divisible by some value of k, break.
isComposite = true;
break;
}
}

}
if (!isComposite)
{
printf("Prime number: %i\n", i);

if (nextIdx < PRIMES_MAX_SIZE)
{
// If the memory allocated for the array is sufficient to store an additional prime, do so.
primesSoFar[nextIdx] = i;
nextIdx++;
}

}

}

// I'm using this to get data with which I can find a way to compute a smaller size for primesSoFar.
double primeRatio = (double)(nextIdx + 1) / (double)(max);
printf("The ratio of prime numbers to composites in range 0 to %d is %lf\n", max, primeRatio);

return 0;
}

编辑: primesSoFar 应该是 0 到最大值范围大小的一半。毫无疑问,这引起了一些困惑。

最佳答案

我可以给你两个主要想法,因为我曾参与过一个讨论这个问题的项目。

  1. 大于 3 的素数要么是 6k-1 要么是 6k+1,例如 183 就不可能是素数,因为 183=6x30+ 3,所以你甚至不必检查它。 (注意,这个条件是必要条件,但不是充分条件,例如 256x4+1 但不是素数)
  2. 如果一个数不能被任何小于或等于其根的素数整除,则该数是素数,因此最好从已找到的较小素数中受益。

因此,您可以从包含 23primesList 开始,然后迭代 k 来测试所有6k-16k+1 数字(5、7、11、13、17、19、23、25...)使用我给您的第二条规则,通过对 primesList 中小于或等于您正在检查的数字的根的元素进行除法,如果您发现只有一个元素除以它,您只需停止并传递给另一个元素,因为这个元素不是质数,否则(如果没有人能整除它):通过添加这个新质数来更新 primesList

关于c - 我想优化这个程序,我们在Stack Overflow上找到一个类似的问题: https://stackoverflow.com/questions/59228055/

27 4 0
Copyright 2021 - 2024 cfsdn All Rights Reserved 蜀ICP备2022000587号
广告合作:1813099741@qq.com 6ren.com