gpt4 book ai didi

prolog - lib(ic) 的精确解

转载 作者:行者123 更新时间:2023-12-02 07:07:38 27 4
gpt4 key购买 nike

使用 ECLiPSe Prolog 的 lib(ic) 我从 David H. Bailey, "Resolving numerical anomalies in scientific computation." 偶然发现了以下问题Unum book 提到了我。事实上,这只是其中的一部分。首先,让我用 (is)/2 来表述这个方程。 。 此外,请注意,所有这些十进制数字都以基数 2 float (包含 IEEE)精确表示:

ECLiPSe Constraint Logic Programming System [kernel]
...
Version 6.2development #21 (x86_64_linux), Wed May 27 20:58 2015
[eclipse 1]: lib(ic).
...
Yes (0.36s cpu)
[eclipse 2]: X= -1, Y = 2, Null is 0.80143857*X+1.65707065*Y-2.51270273.

X = -1
Y = 2
Null = 0.0
Yes (0.00s cpu)

所以这真正 0.0(根本没有舍入)。但现在与 $= 相同代替is :

[eclipse 3]: X= -1, Y = 2, Null $= 0.80143857*X+1.65707065*Y-2.51270273.

X = -1
Y = 2
Null = 2.2204460492503131e-16__2.2204460492503131e-16
Yes (0.00s cpu)

此区间不包含 0.0。我知道区间算术通常有点过于近似,如下所示:

[eclipse 4]: 1 $= sqrt(1).

Delayed goals:
0 $= -1.1102230246251565e-16__2.2204460492503131e-16
Yes (0.00s cpu)

但至少等式成立!然而,在第一种情况下,不再包括零。显然我还没有明白一些事情。我也尝试过eval/1但没有效果。

[eclipse 5]: X= -1, Y = 2, Null $= eval(0.80143857*X+1.65707065*Y-2.51270273).

X = -1
Y = 2
Null = 2.2204460492503131e-16__2.2204460492503131e-16
Yes (0.00s cpu)

Null的原因是什么?不包括0.0

<小时/>

(在 @jschimpf 令人惊讶的答案后编辑)

这是本书第 187 页的引文,我将其解释为数字被精确表示(现在划过)。

Use a {3,5}, environment, the one that can simulate IEEE single precision. The input values are exactly representable. ...
{-1, 2}
...
That did the job, computing the exact answer with fewer than half the bits used by ...

否则第 184 页的陈述成立:

...

0.80143857 x + 1.65707065 y = 2.51270273

这些方程看起来确实很简单。假设精确的十进制输入,该
系统可以通过x = -1和y = 2精确求解。

这是通过 SICStus 重新检查的 library(clpq) :

| ?- {X= -1,Y=2,
A = 80143857/100000000,
B = 165707065/100000000,
C = 251270273/100000000,
Null = A*X+B*Y-C}.
X = -1,
Y = 2,
A = 80143857/100000000,
B = 33141413/20000000,
C = 251270273/100000000,
Null = 0 ?
yes

所以 -1, 2 是精确解。

<小时/>

精确的表述

这是一个在输入系数中不存在舍入问题的重新表述,但解仍然只是 -∞...+∞。因此基本正确,但不可用。

[eclipse 2]: A = 25510582, B = 52746197, U = 79981812, 
C = 80143857, D = 165707065, V = 251270273,
A*X+B*Y$=U,C*X+D*Y$=V.

A = 25510582
B = 52746197
U = 79981812
C = 80143857
D = 165707065
V = 251270273
X = X{-1.0Inf .. 1.0Inf}
Y = Y{-1.0Inf .. 1.0Inf}


Delayed goals:
52746197 * Y{-1.0Inf .. 1.0Inf} + 25510582 * X{-1.0Inf .. 1.0Inf} $= 79981812
80143857 * X{-1.0Inf .. 1.0Inf} + 165707065 * Y{-1.0Inf .. 1.0Inf} $= 251270273
Yes (0.00s cpu)

最佳答案

这里有几个问题共同造成了困惑:

  1. 除了声明之外,示例中的三个常量有双 float 的精确表示。

  2. 最初的示例不涉及舍入,这是不正确的。

  3. 第一个示例中看似正确的结果实际上是由于幸运的是舍入错误。其他计算顺序给出不同的结果。

  4. 准确的结果,给定最接近的双浮点表示常数确实不为零,而是 2.2204460492503131e-16。

  5. 区间运算只有在输入时才能给出准确的结果是准确的,但这里的情况并非如此。常数必须是扩大到包含所需小数的区间。

  6. 像 lib(ic) 提供的关系算术本质上就是这样做的不保证特定的评估顺序。由于这个原因,四舍五入错误可能与功能评估期间遇到的错误不同。然而,对于给定的常数,结果是准确的。

下面将进行更详细的介绍。正如我将演示一些使用 ECLiPSe 查询点,先简单介绍一下语法:

  • 两个 float 用双下划线分隔,例如0.99__1.01表示具有下限和上限的区间常数,在本例中1附近的数字。

  • 两个整数之间用一个下划线分隔,例如 3_4表示具有分子和分母的有理常数,在此情况四分之三

为了演示第 (1) 点,请将浮点表示形式转换为0.80143857 变为有理数。这给出了精确的分数3609358445212343/4503599627370496,很接近,但不相同,到预期的小数 80143857/100000000。 float 因此,表示方式准确:

?- F is rational(0.80143857), F =\= 80143857_100000000.
F = 3609358445212343_4503599627370496
Yes (0.00s cpu)

下面显示了结果如何取决于评估顺序(上面第 3 点;请注意,我已通过以下方式简化了原始示例去掉不相关的乘法):

?- Null is -0.80143857 + 3.3141413 - 2.51270273.
Null = 0.0
Yes (0.00s cpu)

?- Null is -2.51270273 + 3.3141413 - 0.80143857.
Null = 2.2204460492503131e-16
Yes (0.00s cpu)

顺序依赖性证明存在舍入误差(第 2 点)。对于熟悉浮点运算的人来说,实际上很容易看出添加 -0.80143857 + 3.3141413 时,0.80143857 的两位精度在调整操作数的指数时迷失方向。事实上它是这个幸运的舍入错误给了OP看似正确的结果!

实际上,第二个结果相对于常量的浮点表示。我们可以证明这一点通过使用精确的有理算术重复计算:

?- Null is rational(-0.80143857) + rational(3.3141413) - rational(2.51270273).
Null = 1_4503599627370496
Yes (0.00s cpu)

?- Null is rational(-2.51270273) + rational(3.3141413) - rational(0.80143857).
Null = 1_4503599627370496
Yes (0.00s cpu)

由于加法是通过精确的有理数完成的,所以现在的结果是与顺序无关,并且因为 1_4503599627370496 =:= 2.2204460492503131e-16,这证实了上面获得的非零浮点结果(第 4 点)。

区间算术在这里有何帮助?它的工作原理是通过计算包围真值的间隔,这样结果总是输入准确。所以至关重要的是输入区间(ECLiPSe 术语中的有界实数)包含期望的真实值。这些可以通过编写它们来获得显式向下,例如0.80143856__0.80143858;通过从精确的数字进行转换,例如使用有理数真实(80143857_100000000);或者通过指示解析器自动将所有 float 扩大到有界实数区间,如下所示:

?- set_flag(syntax_option, read_floats_as_breals).
Yes (0.00s cpu)

?- Null is -0.80143857 + 3.3141413 - 2.51270273.
Null = -8.8817841970012523e-16__1.3322676295501878e-15
Yes (0.00s cpu)

?- Null is -2.51270273 + 3.3141413 - 0.80143857.
Null = -7.7715611723760958e-16__1.2212453270876722e-15
Yes (0.00s cpu)

现在两个结果都包含零,并且很明显结果的精度取决于评估顺序。

关于prolog - lib(ic) 的精确解,我们在Stack Overflow上找到一个类似的问题: https://stackoverflow.com/questions/31058929/

27 4 0
Copyright 2021 - 2024 cfsdn All Rights Reserved 蜀ICP备2022000587号
广告合作:1813099741@qq.com 6ren.com