gpt4 book ai didi

python - Pulp Killer 数独 - 检查变量选择的选择是不同的

转载 作者:行者123 更新时间:2023-12-02 06:51:41 28 4
gpt4 key购买 nike

我正在尝试使用 Python 线性优化库 Pulp 来解决 killer 数独问题。

https://en.wikipedia.org/wiki/Killer_sudoku

这是我迄今为止的尝试,添加了每行加起来必须等于 45 的约束。

import pulp
prob = pulp.LpProblem("Sudoku Problem")
prob += 0, "Arbitrary Objective Function"

# 9 by 9 grid of 'choices', integers between 1-9
choices = pulp.LpVariable.dicts(
"Choice", (range(9), range(9)), cat="Integer", lowBound=1, upBound=9)

# identify puzzle rows that must have only 1 of every value
row_groups = [[(i, j) for i in range(9)] for j in range(9)]

# Seems to work, make every row add up 45
for distinct_group in row_groups:
for i, j in distinct_group:
distinct_group_constraint = [choices[i][j] for i, j in distinct_group]
prob += pulp.lpSum(distinct_group_constraint) == 45


# ... Code to add additional constraints for columns, boxes and 'cages'. Excluded for brevity.

prob.solve()

问题是我正在努力添加更严格的约束,即一行中的每个值必须不同。例如,如果一行具有这些值

[1,9,1,9,1,9,1,9,5]

它将通过上面的约束,但不会是有效的数独行,因为每个值都不是唯一的。

下面是我尝试添加更严格的约束,它似乎不起作用,因为问题没有解决

for n in range(1, 10):
for distinct_group in row_groups:
for i, j in distinct_group:
distinct_group_constraint = [choices[i][j] == n for i, j in distinct_group]
prob += pulp.lpSum(distinct_group_constraint) == 1

我在网上看到了几个例子,通过将这种优化重新定义为二进制标志的 9x9x9 选择,而不是整数 1-9 选择的 9x9 优化来解决这个问题。问题是,我发现很难看出如何在 9x9x9 的情况下轻松检查“笼子”的总和,而这在 9x9 的情况下非常简单。

这是“非 killer ”数独的 9x9x9 设置示例。 https://github.com/coin-or/pulp/blob/master/examples/Sudoku1.py

# cells (0,0) and (0,1) must sum to 8
cage_constraints = [(8, [[0, 0], [0, 1]])]

for target, cells in cage_constraints:
cage_cells_constraint = [choices[i][j] for i, j in cells]
prob += pulp.lpSum(cage_cells_constraint) == target

我希望 (a) 找到一种方法来添加更严格的约束,即在 9x9 设置中任何选择都不能重复,或者 (b) 一种方法来轻松添加 9x9x9 情况下笼子“总和”的约束。如果您想要测试整个笼子约束列表,这里是此谜题中的笼子约束列表。

CAGE_CONSTRAINTS = [
(8, [[0, 0], [0, 1]]),
(9, [[0, 6], [0, 7]]),
(8, [[0, 2], [1, 2]]),
(12, [[0, 3], [0, 4], [1, 3]]),
(15, [[0, 5], [1, 5], [2, 5]]),
(19, [[1, 6], [1, 7], [2, 7]]),
(16, [[0, 8], [1, 8], [2, 8]]),
(14, [[1, 0], [1, 1], [2, 0]]),
(15, [[2, 1], [2, 2]]),
(10, [[2, 3], [3, 3]]),
(12, [[1, 4], [2, 4]]),
(7, [[2, 6], [3, 6]]),
(24, [[3, 0], [3, 1], [4, 1]]),
(17, [[3, 7], [3, 8], [4, 8]]),
(8, [[3, 2], [4, 2]]),
(12, [[4, 3], [5, 3]]),
(19, [[3, 4], [4, 4], [5, 4]]),
(4, [[3, 5], [4, 5]]),
(15, [[4, 6], [5, 6]]),
(12, [[4, 0], [5, 0], [5, 1]]),
(7, [[4, 7], [5, 7], [5, 8]]),
(8, [[5, 2], [6, 2]]),
(10, [[6, 4], [7, 4]]),
(14, [[5, 5], [6, 5]]),
(12, [[6, 6], [6, 7]]),
(18, [[6, 8], [7, 7], [7, 8]]),
(15, [[6, 0], [7, 0], [8, 0]]),
(13, [[6, 1], [7, 1], [7, 2]]),
(12, [[6, 3], [7, 3], [8, 3]]),
(15, [[7, 5], [8, 4], [8, 5]]),
(7, [[7, 6], [8, 6]]),
(10, [[8, 1], [8, 2]]),
(8, [[8, 7], [8, 8]]),
]

https://www.dailykillersudoku.com/search?dt=2020-02-15

这是解决方案 https://www.dailykillersudoku.com/pdfs/19664.solution.pdf

编辑 - 如果我尝试使用二元选择更改为 9x9x9 问题,我得到的结果与我想要的笼子约束不匹配。这是一个片段。

choices = pulp.LpVariable.dicts(
"Choice", (range(9), range(9), range(1, 10),), cat="Binary"
)

# add constraints that only one choice for each 'distinct_group'
for n in range(1, 10):
for distinct_group in distinct_groups:
for i, j in distinct_group:
distinct_group_constraint = [choices[i][j][n] for i, j in
distinct_group]
prob += pulp.lpSum(distinct_group_constraint) == 1

# add constraints that cells in cages must equal 'cage_total'
for target, cells in CAGE_CONSTRAINTS:
cage_cells_constraint = [
choices[i][j][n] * n for i, j in cells for n in range(1, 10)
]
prob += pulp.lpSum(cage_cells_constraint) == target

这是完整的示例 https://gist.github.com/olicairns/d8e222526b87a62b2e175837b452c24a

最佳答案

我建议使用二进制变量 - 根据您找到的示例。它可能看起来像是更多的变量,但据我所知,使用较少数量的整数变量根本不会帮助解决问题 - 用于解决整数变量问题的“分支定界”算法意味着它是就像拥有更多的二进制变量一样低效(更熟悉这一点的人可能能够纠正我)。

所以回答你问题的后半部分:

(b) a way to easily add constraints of the 'sum' of cages in the 9x9x9 case.

这非常简单 - 您只需通过每个变量代表的索引来计算单元格的二进制变量的和积。

如果您已经开发了假设您选择的变量(9x9 整数变量)的所有代码,则可以添加 9x9x9 二进制变量,然后约束您的 9x9 整数变量(现在将是辅助变量),如下所示:

for i in range(1, 10):
for j in range(1, 10):
pulp += choices[i][j] == pulp.lpSum([binary_choices[i][j][k]*k for k in range(1,10)])

您现在拥有两组变量 - 一组二进制变量和一组整数变量,这些变量与等式约束链接以按要求运行。如果您想避免所有辅助变量,那么您只需在当前使用整数变量的任何地方将和积替换为上述索引值即可。

完整的工作代码的完整性:

import pulp

prob = pulp.LpProblem("Sudoku_Problem_KA")
prob += 0, "Arbitrary Objective Function"

CAGE_CONSTRAINTS = [
(8., [[0, 0], [0, 1]]),
(9., [[0, 6], [0, 7]]),
(8., [[0, 2], [1, 2]]),
(12., [[0, 3], [0, 4], [1, 3]]),
(15., [[0, 5], [1, 5], [2, 5]]),
(19., [[1, 6], [1, 7], [2, 7]]),
(16., [[0, 8], [1, 8], [2, 8]]),
(14., [[1, 0], [1, 1], [2, 0]]),
(15., [[2, 1], [2, 2]]),
(10., [[2, 3], [3, 3]]),
(12., [[1, 4], [2, 4]]),
(7., [[2, 6], [3, 6]]),
(24., [[3, 0], [3, 1], [4, 1]]),
(17., [[3, 7], [3, 8], [4, 8]]),
(8., [[3, 2], [4, 2]]),
(12., [[4, 3], [5, 3]]),
(19., [[3, 4], [4, 4], [5, 4]]),
(4., [[3, 5], [4, 5]]),
(15., [[4, 6], [5, 6]]),
(12., [[4, 0], [5, 0], [5, 1]]),
(7., [[4, 7], [5, 7], [5, 8]]),
(8., [[5, 2], [6, 2]]),
(10., [[6, 4], [7, 4]]),
(14., [[5, 5], [6, 5]]),
(12., [[6, 6], [6, 7]]),
(18., [[6, 8], [7, 7], [7, 8]]),
(15., [[6, 0], [7, 0], [8, 0]]),
(13., [[6, 1], [7, 1], [7, 2]]),
(12., [[6, 3], [7, 3], [8, 3]]),
(15., [[7, 5], [8, 4], [8, 5]]),
(7., [[7, 6], [8, 6]]),
(10., [[8, 1], [8, 2]]),
(8., [[8, 7], [8, 8]]),
]

# groups that should only have 1 of each number 1-9
row_groups = [[(i, j) for i in range(9)] for j in range(9)]
col_groups = [[(j, i) for i in range(9)] for j in range(9)]
box_groups = [
[(3 * i + k, 3 * j + l) for k in range(3) for l in range(3)]
for i in range(3)
for j in range(3)
]
distinct_groups = row_groups + col_groups + box_groups

# binary choices: rows, columns and values 1-9
choices = pulp.LpVariable.dicts(
"choices", (range(9), range(9), range(1, 10)), cat="Binary"
)

# add constraints that only one choice for each 'distinct_group'
for n in range(1, 10):
for distinct_group in distinct_groups:
prob += pulp.lpSum([choices[i][j][n] for i, j in distinct_group]) <= 1

# add constraints that cells in cages must equal 'cage_total'
for target, cells in CAGE_CONSTRAINTS:
prob += pulp.lpSum([choices[i][j][n] * n for i, j in cells for n in range(1, 10)]) >= target

# only pick one binary value per cell:
for i in range(9):
for j in range(9):
prob += pulp.lpSum([choices[i][j][n] for n in range(1, 10)]) <= 1

prob.solve()

print('Status:',pulp.LpStatus[prob.status])

# Extract results
res = [[sum([choices[i][j][n].varValue*n for n in range(1,10)]) for j in range(9)] for i in range(9)]

# checking a few constraints match
assert res[8][7] + res[8][8] == 8
assert res[0][0] + res[0][1] == 8

print(res)

关于python - Pulp Killer 数独 - 检查变量选择的选择是不同的,我们在Stack Overflow上找到一个类似的问题: https://stackoverflow.com/questions/60248531/

28 4 0
Copyright 2021 - 2024 cfsdn All Rights Reserved 蜀ICP备2022000587号
广告合作:1813099741@qq.com 6ren.com