- html - 出于某种原因,IE8 对我的 Sass 文件中继承的 html5 CSS 不友好?
- JMeter 在响应断言中使用 span 标签的问题
- html - 在 :hover and :active? 上具有不同效果的 CSS 动画
- html - 相对于居中的 html 内容固定的 CSS 重复背景?
我尝试在 Prolog CLPFD 中实现高效的异或 (XOR)。这应该是简单的谓词,例如:
xor(A, B, AxorB).
A
、B
、AxorB
是自然数(带 0),AxorB
是 A
异或B
。
我的主要问题是效率。首先,我无法找到任何方法来异或两个数字而不将这些数字分解成可以进一步处理/约束的单独部分,并且分解这些数字的过程(创建适当的约束然后解决它们)需要一些处理时间。其次,除了下面第二个代码中提供的方法之外,我无法想出任何有效的方法来“模拟”自然数上的 XOR 函数。
让我们从我的第一个代码开始。这是最简单的 XOR 实现,它仅适用于 1 位值(0 和 1):
xor_1bit_values(A, B, AxorB) :-
AxorB #= (A + B) mod 2.
要将其用于大于 1 的数字,必须将数字分解为位:
xor_number(A, B, Result, Bits) :-
Count is Bits - 1,
xor_number(A, B, Result, Count, 0).
xor_number(A, B, Result, 0, Sum) :-
xor_1bit_values(A, B, Xor),
Result #= Xor + Sum.
xor_number(A, B, Result, Count, Sum) :-
P is 2^Count,
X #= A / P,
Y #= B / P,
xor_1bit_values(X, Y, Tmp),
NewSum #= Sum + P*Tmp,
NewCount is Count - 1,
xor_number(A, B, Result, NewCount, NewSum).
示例输入和输出:
?- time(xor_number(123456789, 987654321, R, 32)).
% 943 inferences, 0.000 CPU in 0.001 seconds (0% CPU, Infinite Lips)
R = 1032168868
现在,这对于我的目的来说太慢了,因为在我的代码中,当我有 AxorB
时,我有时需要猜测 A
和 B
> 其中所有这些都应该是 32 位数字。对于需要超过 10 位的数字,这会涉及数百万个推论,而且这些推论似乎呈指数级增长。我使用最好的标签策略、异或参数交换和其他技巧来加速计算。
所以,我尝试做一些数学题。我设计的是 2 位值 (0, 1, 2, 3) 的 XOR 函数:
xor_2bit_values(A, B, Result) :-
Result #= ((A + B*((-1)^A)) mod 4).
要在大于 3 的数字中使用它,代码类似于我之前介绍的代码:
xor_number2(A, B, Result, Bits) :-
Count is (Bits / 2) - 1,
xor_number2(A, B, Result, Count, 0).
xor_number2(A, B, Result, 0, Sum) :-
xor_2bit_values(A, B, Xor),
Result #= Xor + Sum,
!.
xor_number2(A, B, Result, Count, Sum) :-
P is 4^Count,
X #= A / P,
Y #= B / P,
xor_2bit_values(X, Y, Tmp),
NewSum #= Sum + P*Tmp,
NewCount is Count - 1,
xor_number2(A, B, Result, NewCount, NewSum).
这似乎比第一个代码快了近 50%。但尽管如此,两倍的差异对我来说仍然太小了。
所以,我向您提出的问题是:如何对 32 位数字实现高效的 XOR?如果这在现代机器上不可能,并且您可以通过某种计算来证明这一点,那么这也是对我的问题的一个很好的答案。最终,我怎样才能最好地改进我的代码?也许您有一些想法如何在不分解数字的情况下处理数字或如何以其他方式对数字进行异或?
附加信息:如果您碰巧尝试我的代码从三个参数中猜测两个或异或,那么因为可以自由交换该函数的参数(来自其数学属性)我建议将 A
设置为绑定(bind)变量,将 B
和 AxorB
设置为未绑定(bind)。 CLPFD 似乎以这种方式工作得最快。此外,最好的标签策略是labeling([bisect], [B,AxorB]
。
最佳答案
我想我会尝试预先计算一些“位 block ”表,然后使用取模和除法(两者都受支持的操作),对表进行 N 次查找。这个想法是查找可以比库执行的(巨大!)算术扩展更快。这是常见的“用空间换时间”的伎俩。
/** <module> bits_clpfd
*
* naive implementation of basic bit operations on constrained variables
* --------
*
* source file /home/carlo/prolog/bits_clpfd.pl
* created at dom mag 18 07:57:03 2014
*
* @author carlo
* @version 0.9.9
* @copyright carlo
* @license LGPL v2.1
*/
:- module(bits_clpfd,
[bits_clpfd_prepare_lut/2
]).
:- use_module(library(clpfd)).
:- dynamic lut_and_or_xor/5.
:- dynamic chunk_size/2.
%% bits_clpfd_prepare_lut(Bits, Max) is det.
%
% setup the lookup table for basic most operations on constrained variables
% the cost is mainly controlled by Bits, being the LUT size 2^(Bits*2)
%
% @arg Bits how many bits to store
% @arg Max describe Max
%
bits_clpfd_prepare_lut(Bits, BMax) :-
( nonvar(Bits) ; Bits = 4 ),
( nonvar(BMax) ; BMax = 32 ),
retractall(chunk_size(_, _)),
Max is 1 << BMax,
assert(chunk_size(Bits, Max)),
retractall(lut_and_or_xor(_,_, _,_,_)),
N is (1 << Bits) - 1,
forall((between(0, N, A), between(0, N, B)), (
And is A /\ B,
Or is A \/ B,
Xor is A xor B,
assertz(lut_and_or_xor(A,B, And,Or,Xor))
)).
%% xor_clpfd(A, B, C) is nondet.
%
% naive constraint A xor B #= C
%
% @arg A constrained variable
% @arg B constrained variable
% @arg C constrained variable
%
xor_clpfd(A, B, C) :-
maplist(check_domain_range, [A,B,C]),
split_apply_xor(1, A, B, C).
split_apply_xor(L, A, B, C) :-
chunk_size(NBits, Max),
( L < Max
-> Mod is (2 << NBits),
Am #= A mod Mod,
Bm #= B mod Mod,
Cm #= C mod Mod,
lut_and_or_xor(Am, Bm, _, _, Cm),
Ad #= A / Mod,
Bd #= B / Mod,
Cd #= C / Mod,
M is L << NBits,
split_apply_xor(M, Ad, Bd, Cd)
; true
).
check_domain_range(V) :-
chunk_size(_, Max),
assertion((fd_dom(V, Inf .. Sup), Inf>=0, Sup < Max)).
:- begin_tests(bits_clpfd).
test(1) :-
bits_clpfd_prepare_lut(2, 4),
Vs = [A,B,C], Vs ins 0..15,
A #= 1, B #= 1, C #= 0,
xor_clpfd(A, B, C).
:- end_tests(bits_clpfd).
测试
?- run_tests(bits_clpfd).
% PL-Unit: bits_clpfd
Warning: /home/carlo/prolog/bits_clpfd.pl:83:
PL-Unit: Test 1: Test succeeded with choicepoint
done
% test passed
true.
无论如何,这是一种幼稚的方法,正确的方法应该是编译自己的 run_propagator/2。但我从来没有这样做过...
关于prolog - 使用 Prolog CLPFD 实现 32 位数字的 XOR 功能,我们在Stack Overflow上找到一个类似的问题: https://stackoverflow.com/questions/23716331/
我正在学习序言。 在我看来,prolog 的规则(关系和简单的事实)是“肯定的”——他们说的是或可能是真的。 向 prolog 程序添加新的此类规则只会增加“正面”知识。它不能添加“负面”事实来说明某
希望你一切都好。我是 prolog 的新手,我在编写代码时遇到问题。这段代码的目的很简单。它将列表中的每个元素添加到最后一个。我可以用 Java 做的事情是: static void add(
在closed-world assumption下, what is not currently known to be true, is false Prolog 的语义通常被称为遵循封闭世界假设,
我正在 Prolog (swi-prolog) 中做我的第一步,但无法解决以下问题:如何将存在量化的规则包含在我的事实中;具体来说,我如何包含句子“每个人都是某人的 friend ”\forall x
我知道如何以过程方式(即,在 C++、Java 等中)对 BST 执行范围查询,但我发现很难转换为 Prolog 语言。 程序的方式应该是这样的: http://www.geeksforgeeks.o
Prolog 中是否有(相对)当前最佳实践的引用资料?一本适合没有学习过逻辑编程或“Prolog 的工艺”等高级文本的商业 Prolog 开发人员? 有很多通用教程,但我能找到的关于最佳实践的唯一一个
这是CFG: S -> T | V T -> UU U -> aUb | ab V -> aVb | aWb W -> bWa | ba 所以这将接受某种形式的: {a^n b^n a^m b^m |
我目前有以下问题,我想用 Prolog 解决。这是一个简单的例子,很容易在 Java/C/whatever 中解决。我的问题是,我认为与 Java 的思想联系太紧密,无法以利用 Prolog 逻辑能力
就目前而言,这个问题不适合我们的问答形式。我们希望答案得到事实、引用资料或专业知识的支持,但这个问题可能会引发辩论、争论、投票或扩展讨论。如果您觉得这个问题可以改进并可能重新打开,visit the
我无法理解差异列表,尤其是在这个谓词中: palindrome(A, A). palindrome([_|A], A). palindrome([C|A], D) :- palindrome(A
(这不是一个类(class)作业问题。只是我自己的个人学习。) 我正在尝试在 Prolog 中进行练习以从列表中删除元素。这是我的代码: deleteall([],X,[]). deleteall([
我最近试图了解 Prolog,它似乎可以很好地映射到很多领域,但我无法弄清楚它可能不擅长什么。 那么它有什么不好的(除了需要实时/无 gc 性能的东西)? 最佳答案 我同意你的一般评估,即 Prolo
我正在组装一个简单的元解释器,它输出证明的步骤。我无法将证明步骤作为输出参数。我的谓词 explain1 以我想要的详细形式返回证明,但不是作为输出参数。我的谓词 explain2 将证明作为输出参数
hi(g,plus(A,B),int) :- hi(g,A,int),hi(g,B,int),!. 在上面的语句中 '!' 是什么意思?在声明的末尾签名吗? 最佳答案 那是 cut operator
有没有一种简单的方法可以让 prolog 中的查询只返回每个结果一次? 例如我正在尝试类似的东西: deadly(Xn) :- scary(X), Xn is X - 1, Xp is X + 1,
我正在尝试学习 Prolog。这是我使用这种语言的第一步。作为练习,我想编写可以识别一些扑克手牌的程序(同花顺、同花顺、满屋等)。 我正在 Prolog 中寻找良好的卡片表示。我需要有可能检查一张卡片
我刚刚被介绍到 Prolog 并且正在尝试编写一个谓词来查找整数列表的最大值。我需要写一个从头开始比较,另一个从结尾比较。到目前为止,我有: max2([],R). max2([X|Xs], R):-
我试图在Prolog中编写谓词palindrome/1,当且仅当其列表输入包含回文列表时才为true。 例如: ?- palindrome([1,2,3,4,5,4,3,2,1]). 是真的。 有什么
我正在尝试编写一个程序,该程序将两个列表作为输入并检查适当的子集。我开始于: proper([A],[]). proper([],[A]). proper([A|T1],[A|T2]) :- prop
我是 Prolog 的新手,我正在使用 SWI-Prolog v6.6 在 *.pl 中存储断言文件。 :- dynamic fact/2. assert(fact(fact1,fact2)). 使用
我是一名优秀的程序员,十分优秀!