- html - 出于某种原因,IE8 对我的 Sass 文件中继承的 html5 CSS 不友好?
- JMeter 在响应断言中使用 span 标签的问题
- html - 在 :hover and :active? 上具有不同效果的 CSS 动画
- html - 相对于居中的 html 内容固定的 CSS 重复背景?
我被告知并从英特尔的手册中读到可以将指令写入内存,但指令预取队列已经获取过时的指令并将执行那些旧指令。我没有成功地观察到这种行为。我的方法如下。
英特尔软件开发手册第 11.6 节指出
A write to a memory location in a code segment that is currently cached in the processor causes the associated cache line (or lines) to be invalidated. This check is based on the physical address of the instruction. In addition, the P6 family and Pentium processors check whether a write to a code segment may modify an instruction that has been prefetched for execution. If the write affects a prefetched instruction, the prefetch queue is invalidated. This latter check is based on the linear address of the instruction.
int fd = open("code_area", O_RDWR | O_CREAT, S_IRWXU | S_IRWXG | S_IRWXO);
assert(fd>=0);
write(fd, zeros, 0x1000);
uint8_t *a1 = mmap(NULL, 0x1000, PROT_READ | PROT_WRITE | PROT_EXEC,
MAP_FILE | MAP_SHARED, fd, 0);
uint8_t *a2 = mmap(NULL, 0x1000, PROT_READ | PROT_WRITE | PROT_EXEC,
MAP_FILE | MAP_SHARED, fd, 0);
assert(a1 != a2);
fun:
push %rbp
mov %rsp, %rbp
xorq %rax, %rax # Return value 0
# A far jump simulated with a far return
# Push the current code segment %cs, then the address we want to far jump to
xorq %rsi, %rsi
mov %cs, %rsi
pushq %rsi
leaq copy(%rip), %r15
pushq %r15
lretq
copy:
# Overwrite the two nops below with `inc %eax'. We will notice the change if the
# return value is 1, not zero. The passed in pointer at %rdi points to the same physical
# memory location of fun_ins, but the linear addresses will be different.
movw $0xc0ff, (%rdi)
fun_ins:
nop # Two NOPs gives enough space for the inc %eax (opcode FF C0)
nop
pop %rbp
ret
fun_end:
nop
a1
调用函数,但我传递了一个指向
a2
的指针作为代码修改的目标。
#define DIFF(a, b) ((long)(b) - (long)(a))
long sz = DIFF(fun, fun_end);
memcpy(a1, fun, sz);
void *tochange = DIFF(fun, fun_ins);
int val = ((int (*)(void*))a1)(tochange);
最佳答案
我想,你应该检查 MACHINE_CLEARS.SMC
CPU 的性能计数器(MACHINE_CLEARS
事件的一部分)(它在 Sandy Bridge 1 中可用,用于您的 Air powerbook;也可以在您的 Xeon 上可用,即 Nehalem 2 - 搜索“smc” )。您可以使用 oprofile
, perf
或英特尔的 Vtune
找到它的值(value):
http://software.intel.com/sites/products/documentation/doclib/iss/2013/amplifier/lin/ug_docs/GUID-F0FD7660-58B5-4B5D-AA9A-E1AF21DDCA0E.htm
Machine Clears
Metric Description
Certain events require the entire pipeline to be cleared and restarted from just after the last retired instruction. This metric measures three such events: memory ordering violations, self-modifying code, and certain loads to illegal address ranges.
Possible Issues
A significant portion of execution time is spent handling machine clears. Examine the MACHINE_CLEARS events to determine the specific cause.
MACHINE_CLEARS Event Code: 0xC3 SMC Mask: 0x04
Self-modifying code (SMC) detected.
Number of self-modifying-code machine clears detected.
This event fires when self-modifying code is detected. This can be typically used by folks who do binary editing to force it to take certain path (e.g. hackers). This event counts the number of times that a program writes to a code section. Self-modifying code causes a severe penalty in all Intel 64 and IA-32 processors. The modified cache line is written back to the L2 and LLC caches. Also, the instructions would need to be re-loaded hence causing performance penalty.
mov
;你的 nops 已经在筹备中。但是 SMC 将在 mov 退休时提高,它将杀死所有正在筹备中的东西,包括 nops。
The penalty for executing a piece of code immediately after modifying it is approximately 19 clocks for P1, 31 for PMMX, and 150-300 for PPro, P2, P3, PM. The P4 will purge the entire trace cache after self-modifying code. The 80486 and earlier processors require a jump between the modifying and the modified code in order to flush the code cache. ...
Self-modifying code is not considered good programming practice. It should be used only if the gain in speed is substantial and the modified code is executed so many times that the advantage outweighs the penalties for using self-modifying code.
Placing writable data in the code segment might be impossible to distinguish from self-modifying code. Writable data in the code segment might suffer the same performance penalty as self-modifying code.
Software should avoid writing to a code page in the same 1-KByte subpage that is being executed or fetching code in the same 2-KByte subpage of that is being written. In addition, sharing a page containing directly or speculatively executed code with another processor as a data page can trigger an SMC condition that causes the entire pipeline of the machine and the trace cache to be cleared. This is due to the self-modifying code condition.
I'm a little confused about the manual mentioning P6 and Pentium processors
11.6 SELF-MODIFYING CODE A write to a memory location in a code segment that is currently cached in the processor causes the associated cache line (or lines) to be invalidated. This check is based on the physical address of the instruction. In addition, the P6 family and Pentium processors check whether a write to a code segment may modify an instruction that has been prefetched for execution. If the write affects a prefetched instruction, the prefetch queue is invalidated. This latter check is based on the linear address of the instruction. For the Pentium 4 and Intel Xeon processors, a write or a snoop of an instruction in a code segment, where the target instruction is already decoded and resident in the trace cache, invalidates the entire trace cache. The latter behavior means that programs that self-modify code can cause severe degradation of performance when run on the Pentium 4 and Intel Xeon processors.
In practice, the check on linear addresses should not create compatibility problems among IA-32 processors. Applications that include self-modifying code use the same linear address for modifying and fetching the instruction.
Systems software, such as a debugger, that might possibly modify an instruction using a different linear address than that used to fetch the instruction, will execute a serializing operation, such as a CPUID instruction, before the modified instruction is executed, which will automatically resynchronize the instruction cache and prefetch queue. (See Section 8.1.3, “Handling Self- and Cross-Modifying Code,” for more information about the use of self-modifying code.)
For Intel486 processors, a write to an instruction in the cache will modify it in both the cache and memory, but if the instruction was prefetched before the write, the old version of the instruction could be the one executed. To prevent the old instruction from being executed, flush the instruction prefetch unit by coding a jump instruction immediately after any write that modifies an instruction
Self modifying code is detected using a translation lookaside buffer .. [which] has physical page addresses stored therein over which snoops can be performed using the physical memory address of a store into memory. ... To provide finer granularity than a page of addresses, FINE HIT bits are included with each entry in the cache associating information in the cache to portions of a page within memory.
Therefore snoops, triggered by store instructions into memory, can perform SMC detection by comparing the physical address of all instructions stored within the instruction cache with the address of all instructions stored within the associated page or pages of memory. If there is an address match, it indicates that a memory location was modified. In the case of an address match, indicating an SMC condition, the instruction cache and instruction pipeline are flushed by the retirement unit and new instructions are fetched from memory for storage into the instruction cache.
Because snoops for SMC detection are physical and the ITLB ordinarily accepts as an input a linear address to translate into a physical address, the ITLB is additionally formed as a content-addressable memory on the physical addresses and includes an additional input comparison port (referred to as a snoop port or reverse translation port)
关于c - 使用自修改代码观察 x86 上的陈旧指令提取,我们在Stack Overflow上找到一个类似的问题: https://stackoverflow.com/questions/17395557/
#include using namespace std; class C{ private: int value; public: C(){ value = 0;
这个问题已经有答案了: What is the difference between char a[] = ?string?; and char *p = ?string?;? (8 个回答) 已关闭
关闭。此题需要details or clarity 。目前不接受答案。 想要改进这个问题吗?通过 editing this post 添加详细信息并澄清问题. 已关闭 7 年前。 此帖子已于 8 个月
除了调试之外,是否有任何针对 c、c++ 或 c# 的测试工具,其工作原理类似于将独立函数复制粘贴到某个文本框,然后在其他文本框中输入参数? 最佳答案 也许您会考虑单元测试。我推荐你谷歌测试和谷歌模拟
我想在第二台显示器中移动一个窗口 (HWND)。问题是我尝试了很多方法,例如将分辨率加倍或输入负值,但它永远无法将窗口放在我的第二台显示器上。 关于如何在 C/C++/c# 中执行此操作的任何线索 最
我正在寻找 C/C++/C## 中不同类型 DES 的现有实现。我的运行平台是Windows XP/Vista/7。 我正在尝试编写一个 C# 程序,它将使用 DES 算法进行加密和解密。我需要一些实
很难说出这里要问什么。这个问题模棱两可、含糊不清、不完整、过于宽泛或夸夸其谈,无法以目前的形式得到合理的回答。如需帮助澄清此问题以便重新打开,visit the help center . 关闭 1
有没有办法强制将另一个 窗口置于顶部? 不是应用程序的窗口,而是另一个已经在系统上运行的窗口。 (Windows, C/C++/C#) 最佳答案 SetWindowPos(that_window_ha
假设您可以在 C/C++ 或 Csharp 之间做出选择,并且您打算在 Windows 和 Linux 服务器上运行同一服务器的多个实例,那么构建套接字服务器应用程序的最明智选择是什么? 最佳答案 如
你们能告诉我它们之间的区别吗? 顺便问一下,有什么叫C++库或C库的吗? 最佳答案 C++ 标准库 和 C 标准库 是 C++ 和 C 标准定义的库,提供给 C++ 和 C 程序使用。那是那些词的共同
下面的测试代码,我将输出信息放在注释中。我使用的是 gcc 4.8.5 和 Centos 7.2。 #include #include class C { public:
很难说出这里问的是什么。这个问题是含糊的、模糊的、不完整的、过于宽泛的或修辞性的,无法以目前的形式得到合理的回答。如需帮助澄清此问题以便重新打开它,visit the help center 。 已关
我的客户将使用名为 annoucement 的结构/类与客户通信。我想我会用 C++ 编写服务器。会有很多不同的类继承annoucement。我的问题是通过网络将这些类发送给客户端 我想也许我应该使用
我在 C# 中有以下函数: public Matrix ConcatDescriptors(IList> descriptors) { int cols = descriptors[0].Co
我有一个项目要编写一个函数来对某些数据执行某些操作。我可以用 C/C++ 编写代码,但我不想与雇主共享该函数的代码。相反,我只想让他有权在他自己的代码中调用该函数。是否可以?我想到了这两种方法 - 在
我使用的是编写糟糕的第 3 方 (C/C++) Api。我从托管代码(C++/CLI)中使用它。有时会出现“访问冲突错误”。这使整个应用程序崩溃。我知道我无法处理这些错误[如果指针访问非法内存位置等,
关闭。这个问题不符合Stack Overflow guidelines .它目前不接受答案。 我们不允许提问寻求书籍、工具、软件库等的推荐。您可以编辑问题,以便用事实和引用来回答。 关闭 7 年前。
已关闭。此问题不符合Stack Overflow guidelines 。目前不接受答案。 要求我们推荐或查找工具、库或最喜欢的场外资源的问题对于 Stack Overflow 来说是偏离主题的,因为
我有一些 C 代码,将使用 P/Invoke 从 C# 调用。我正在尝试为这个 C 函数定义一个 C# 等效项。 SomeData* DoSomething(); struct SomeData {
这个问题已经有答案了: Why are these constructs using pre and post-increment undefined behavior? (14 个回答) 已关闭 6
我是一名优秀的程序员,十分优秀!