- html - 出于某种原因,IE8 对我的 Sass 文件中继承的 html5 CSS 不友好?
- JMeter 在响应断言中使用 span 标签的问题
- html - 在 :hover and :active? 上具有不同效果的 CSS 动画
- html - 相对于居中的 html 内容固定的 CSS 重复背景?
我正在尝试使用 Keras 预处理库中的生成器。我想尝试一下,因为 Keras 提供了很棒的图像增强功能。但是,我不确定这是否真的可能。
以下是我如何从 Keras 生成器创建 tf 数据集:
def make_generator():
train_datagen = ImageDataGenerator(rescale=1. / 255)
train_generator =
train_datagen.flow_from_directory(train_dataset_folder,target_size=(224, 224), class_mode='categorical', batch_size=32)
return train_generator
train_dataset = tf.data.Dataset.from_generator(make_generator,(tf.float32, tf.float32)).shuffle(64).repeat().batch(32)
请注意,如果您尝试直接将 train_generator
作为参数提供给 tf.data.Dataset.from_generator
,将会出现错误。但是,上述方法不会产生错误。
当我在 session 中运行它以检查数据集的输出时,出现以下错误。
iterator = train_dataset.make_one_shot_iterator()
next_element = iterator.get_next()
sess = tf.Session()
for i in range(100):
sess.run(next_element)
Found 1000 images belonging to 2 classes. --------------------------------------------------------------------------- InvalidArgumentError Traceback (most recent call last) /usr/local/lib/python3.6/dist-packages/tensorflow/python/client/session.py in _do_call(self, fn, *args) 1291 try: -> 1292 return fn(*args) 1293 except errors.OpError as e:
/usr/local/lib/python3.6/dist-packages/tensorflow/python/client/session.py in _run_fn(feed_dict, fetch_list, target_list, options, run_metadata) 1276 return self._call_tf_sessionrun( -> 1277 options, feed_dict, fetch_list, target_list, run_metadata) 1278
/usr/local/lib/python3.6/dist-packages/tensorflow/python/client/session.py in _call_tf_sessionrun(self, options, feed_dict, fetch_list, target_list, run_metadata) 1366 self._session, options, feed_dict, fetch_list, target_list, -> 1367 run_metadata) 1368
InvalidArgumentError: Cannot batch tensors with different shapes in component 0. First element had shape [32,224,224,3] and element 29 had shape [8,224,224,3]. [[{{node IteratorGetNext_2}} = IteratorGetNextoutput_shapes=[, ], output_types=[DT_FLOAT, DT_FLOAT], _device="/job:localhost/replica:0/task:0/device:CPU:0"]]
During handling of the above exception, another exception occurred:
如果有人有这方面的经验或知道任何替代方法,请告诉我。
更新
使用 J.E.K. 的建议后,我能够解决该问题
train_dataset = tf.data.Dataset.from_generator(make_generator,(tf.float32, tf.float32))
但是,当我将 train_dataset
提供给 Keras .fit
方法时,我收到以下错误。
model_regular.fit(train_dataset,steps_per_epoch=1000,epochs=2)
--------------------------------------------------------------------------- ValueError Traceback (most recent call last) in () ----> 1 model_regular.fit(train_dataset,steps_per_epoch=1000,epochs=2)
/usr/local/lib/python3.6/dist-packages/tensorflow/python/keras/engine/training.py in fit(self, x, y, batch_size, epochs, verbose, callbacks, validation_split, validation_data, shuffle, class_weight, sample_weight, initial_epoch, steps_per_epoch, validation_steps, **kwargs) 1507 steps_name='steps_per_epoch', 1508 steps=steps_per_epoch, -> 1509 validation_split=validation_split) 1510 1511 # Prepare validation data.
/usr/local/lib/python3.6/dist-packages/tensorflow/python/keras/engine/training.py in _standardize_user_data(self, x, y, sample_weight, class_weight, batch_size, check_steps, steps_name, steps, validation_split) 948 x = self._dataset_iterator_cache[x] 949 else: --> 950 iterator = x.make_initializable_iterator() 951 self._dataset_iterator_cache[x] = iterator 952 x = iterator
/usr/local/lib/python3.6/dist-packages/tensorflow/python/data/ops/dataset_ops.py in make_initializable_iterator(self, shared_name) 119 with ops.colocate_with(iterator_resource): 120 initializer = gen_dataset_ops.make_iterator(self._as_variant_tensor(), --> 121 iterator_resource) 122 return iterator_ops.Iterator(iterator_resource, initializer, 123 self.output_types, self.output_shapes,
/usr/local/lib/python3.6/dist-packages/tensorflow/python/ops/gen_dataset_ops.py in make_iterator(dataset, iterator, name) 2542 if _ctx is None or not _ctx._eager_context.is_eager: 2543 _, _, _op = _op_def_lib._apply_op_helper( -> 2544 "MakeIterator", dataset=dataset, iterator=iterator, name=name) 2545 return _op 2546 _result = None
/usr/local/lib/python3.6/dist-packages/tensorflow/python/framework/op_def_library.py in _apply_op_helper(self, op_type_name, name, **keywords) 348 # Need to flatten all the arguments into a list. 349 # pylint: disable=protected-access --> 350 g = ops._get_graph_from_inputs(_Flatten(keywords.values())) 351 # pylint: enable=protected-access 352 except AssertionError as e:
/usr/local/lib/python3.6/dist-packages/tensorflow/python/framework/ops.py in _get_graph_from_inputs(op_input_list, graph) 5659 graph = graph_element.graph 5660 elif original_graph_element is not None: -> 5661 _assert_same_graph(original_graph_element, graph_element) 5662 elif graph_element.graph is not graph:
5663 raise ValueError("%s is not from the passed-in graph." % graph_element)/usr/local/lib/python3.6/dist-packages/tensorflow/python/framework/ops.py in _assert_same_graph(original_item, item) 5595 if original_item.graph is not item.graph: 5596 raise ValueError("%s must be from the same graph as %s." % (item, -> 5597 original_item)) 5598 5599
ValueError: Tensor("IteratorV2:0", shape=(), dtype=resource) must be from the same graph as Tensor("FlatMapDataset:0", shape=(), dtype=variant).
这是一个错误还是 Keras fit 方法不应该以这种方式使用?
最佳答案
我尝试用一个简单的示例重现您的结果,我发现当在生成器函数和 tf.data 中使用批处理时,您会得到不同的输出形状。
Keras 函数 train_datagen.flow_from_directory(batch_size=32)
已返回形状为 [batch_size, width, height, depth]
的数据。如果使用tf.data.Dataset().batch(32)
,则输出数据会再次批处理为形状[batch_size、batch_size、width、height、deep]
。
这可能由于某种原因导致了您的问题。
关于python - 如何通过 tf.data API 使用 Keras 生成器,我们在Stack Overflow上找到一个类似的问题: https://stackoverflow.com/questions/52636127/
我已经设置了 Azure API 管理服务,并在自定义域上配置了它。在 Azure 门户中 API 管理服务的配置部分下,我设置了以下内容: 因为这是一个客户端系统,我必须屏蔽细节,但以下是基础知识:
我是一名习惯 React Native 的新程序员。我最近开始学习 Fetch API 及其工作原理。我的问题是,我找不到人们使用 API key 在他们的获取语句中访问信息的示例(我很难清楚地表达有
这里有很多关于 API 是什么的东西,但是我找不到我需要的关于插件 API 和类库 API 之间的区别。反正我不明白。 在 Documenting APIs 一书中,我读到:插件 API 和类库 AP
关闭。这个问题不满足Stack Overflow guidelines .它目前不接受答案。 想改善这个问题吗?更新问题,使其成为 on-topic对于堆栈溢出。 7年前关闭。 Improve thi
我正在尝试找出设计以下场景的最佳方法。 假设我已经有了一个 REST API 实现,它将从不同的供应商那里获取书籍并将它们返回给我自己的客户端。 每个供应商都提供单独的 API 来向其消费者提供图书。
请有人向我解释如何使用 api key 以及它有什么用处。 我对此进行了很多搜索,但得到了不同且相互矛盾的答案。有人说 API key 是保密的,它从不作为通信的一部分发送,而其他人则将它发送给客户端
关闭。这个问题是opinion-based .它目前不接受答案。 想改进这个问题?更新问题,以便 editing this post 可以用事实和引用来回答它. 4年前关闭。 Improve this
谁能告诉我为什么 WSo2 API 管理器不进行身份验证?我已经设置了两个 WSo2 API Manager 1.8.0 实例并创建了一个 api。它作为原型(prototype) api 工作正常。
我在学习 DSL 的过程中遇到了 Fluent API。 我在流利的 API 上搜索了很多……我可以得出的基本结论是,流利的 API 使用方法链来使代码流利。 但我无法理解——在面向对象的语言中,我们
基本上,我感兴趣的是在多个区域设置 WSO2 API 管理器;例如亚洲、美国和欧洲。一些 API 将部署在每个区域的数据中心内,而其他 API 将仅部署在特定区域内。 理想情况下,我想要的是一个单一的
我正在构建自己的 API,供以下用户使用: 1) 安卓应用 2) 桌面应用 我的网址之一是:http://api.chatapp.info/order_api/files/getbeers.php我的
我需要向所有用户显示我的站点的分析,但使用 OAuth 它显示为登录用户配置的站点的分析。如何使用嵌入 API 实现仪表板但仅显示我的网站分析? 我能想到的最好的可能性是使用 API key 而不是客
我正在研究大公司如何管理其公共(public) API。我想到的是拥有成熟 API 的公司,例如 Google、Facebook、Twitter 和 Amazon。 这些公司向公众公开了许多不同的 A
在定义客户可访问的 API 时,以下是首选的行业惯例: a) 定义一组显式 API 方法,每个方法都有非常狭窄和特定的目的,例如: SetUserName SetUserAge Se
这在本地 deserver 和部署时都会发生。我成功地能够通过留言簿教程使用 API 资源管理器,但现在我已经创建了自己的项目并尝试访问我编写的第一个 API,它从未出现过。搜索栏旁边的黄色“正在加载
我正在尝试使用 http://ip-api.com/ api通过我的ip地址获取经度和纬度。当我访问 http://ip-api.com/json从我的浏览器或使用 curl,它以 json 格式返回
这里的典型示例是 Twitter 的 API。我从概念上理解 REST API 的工作原理,本质上它只是针对您的特定请求向他们的服务器查询,然后您会在其中收到响应(JSON、XML 等),很棒。 但是
我能想到的最好的标题,但要澄清的是,情况是这样的: 我正在开发一种类似短 url 的服务,该服务允许用户使用他们的 Twitter 帐户“登录”并发布内容。现在这项服务可以包含在 Tweetdeck
我正在设计用于管理评论和讨论线程的 API 方案。我想有一个点 /discussions/:discussionId 当您GET 时,它会返回一组评论和一些元数据。评论也许可以单独访问 /discus
关闭。这个问题需要更多focused .它目前不接受答案。 想改进这个问题吗? 更新问题,使其只关注一个问题 editing this post . 关闭去年。 Improve this quest
我是一名优秀的程序员,十分优秀!